

第二节 深水牵引流沉积

1. 等深流的概念

等深流(contour current):由于地球的旋转而 形成的温盐环流(thermoholine circulation)。

●等深流平行于海底等深线作稳定低速流动, 流速一般为5~20cm/s,局部超过50cm/s;

●主要见于陆隆区;

●等深流沉积速率较低:大西洋2~12cm/ka。

全球深海环流样式(据Stow, 1994)

北大西洋海底盆 地和环流样式 (据McCave et al., 1986)

2. 等深流沉积的特征

(1) 产状:等深 流沉积与深水原地 沉积伴生,并夹于 深水原地沉积层序 中,多呈不规则薄 层状、透镜状,单 层一般厚几厘米, 局部几十厘米。

透镜状薄层砂屑 灰岩等深流沉积

(2)岩性:成分既有硅质碎屑物质,也有碳酸盐物质,沉积类型主要为陆源碎屑岩类和碳酸盐岩类(包括生物碎屑等深岩),也有少量火山碎屑岩。

北大西洋等深 流沉积物的三 端元组分(据 Stow et al., 1984)

(3)粒度:以泥级到砂级为主,具有一系列 由砂、粉砂和粘土混合物组成的过渡类型, 偶见极强等深流侵蚀形成的砾石滞留沉积。

(4) 分选:中等~好,局部极好。2~3个沉积总体,跳跃总体斜率大。

(5)具有牵 引流的沉积作 用的特征,如 冲刷面、交错 层理等。

常见的层理有小型交错纹理和水平纹理

常见的层理有小型交错纹理和水平纹理

偶见大型粘性交错层理

湖南桃源九溪下奥陶统灰泥等深积岩中的大型交错层理

(6) 流向标志:具有平行于斜坡走向的流向标志。

(7)等深流流速和沉积速率缓慢,加上<mark>强烈的生物扰动</mark>,导致原始的沉积构造不能很好的保存。

湘北九溪下奥陶统碳酸盐等深岩(段太忠等,1990)

(9) 发育时期:等深流沉积主要见于海平面上升期,为海侵体系域的特征沉积类型。

●低海平面时期以重力流活动为主,等深流沉积不易保存;

●海平面上升时期,物源区逐渐远离沉积盆地,粗碎屑物质的注入减少,重力流活动减弱,等深流沉积得以保存;

●高海平面时期沉积物供给少,等深流沉积不 发育。

3. 等深岩丘 (contourite drift) 的发现与研究

海洋学调查发现在深海中存在着许多由 等深流沉积物堆积而成的<mark>堆积体</mark>, 其规模可 与由浊流沉积形成的海底扇相比拟。

- Stow等(2002)将其划分为6种类型:
 - (1) 席状等深积岩体
 - (2)伸长状的等深积丘状体
 - (3) 与水道有关的等深积岩体
 - (4) 狭长的等深积岩体(等深岩丘)
 - (5) 油流沉积体系被改造的等深积岩体
 - (6)充填等深积岩体

等深岩丘 (contourite drift) 是呈长条形或伸 长状的等深流堆积体,横剖面上呈丘状,长度一般 为数十至数百公里,宽可达数十公里,高出周围海 底0.1km到1km以上,局部堆积厚度可达2km以上。

Sedimentary model of the Jiuxi contourite drift.

(from Duan et al., 1990)

到目前为止已在 北大西洋中发现 和详细研究了16 个大型的现代等 深岩丘(红色)

Eearly Ordovician lithofacies palaeogeographical map of the northern Hunan Province, China.

二、内波和内潮汐沉积
1. 内波和内潮汐的概念
(1)内波(internal wave):存在于两个不同密
度的水层的界面上,或存在于具有密度梯度的水
层之内的水下波(LaFond, 1966)。

内波与表面波的差异:表面波海水质点回复力为 g(重力加速度),而内波海水质点的回复力为 (₁-₂)g/₂(₁和₂为界面上下水体的密 度)。表面波发生在水与空气界面之间,而内波 与发生在不同密度的水体界面之间,特征相似。

(2) 内潮汐 (internal :周期等于半日 tide) 潮或日潮的内波。 内潮汐在海洋中 <u>普遍存在</u>,而在深水 区(一般水深超过 200~250m) 内潮汐表 现得尤为明显。

海底峡谷中沿轴线上下交 替流动的时间—流速曲线

直到1990年,高振中教授和美国弗吉尼亚理 工大学K. A. Eriksson教授在对美国阿巴拉契亚山 脉中段芬卡斯尔(Fincastle)地区奥陶系进行研 究时,才在地层记录中鉴别出了该类沉积,并进 行了系统研究,首次使用内潮汐沉积(internaltide deposits)这一术语。

1991年这项研究成果在《GEOLOGY》上发 表后引起了国际沉积学界的重视,自此开始了对 这一新领域研究的热潮。

开辟了沉积学研究的一个新领域!

第一部系统论述深水牵引流的专著

Deep-Water Traction Current Deposits -A Study of Internal Tides, Internal Waves, Contour Currents and Their Deposits 深水牵引流沉积 Gas Zhendong, Kenneth A.Erikaton, He Youbin et al. 一内潮汐、内波 和等深流沉积研究 高振中 等 著 ۳

Science Press Beijing, New York

///VSP///

Utrecht The Netherlands Tokyo Japan

内波和内潮汐的沉积特征 (1)形成于深水沉积环境 (2)具有特征的指向构造

塔中地区中上奥陶统 砂岩中的双向交错纹理

陕西陇县中奥陶统平凉组中的双 向交错层,内波沉积

西秦岭中三叠统的双向交错层,内波沉积 甘肃卓尼(据晋惠娟等,2002)

(3)常见脉状、波状和透镜状层理

浙江桐庐上奥陶统内潮汐沉积中 的脉状、波状、透镜状层理

塔中地区中上奥陶 统内潮汐沉积中的 脉状、波状、透镜 状层理

西秦岭上二叠统中的波 状、脉状和透镜状层 理,内潮汐沉积 甘肃夏河(据晋惠娟 等,2002)

如何与潮坪环境的 脉状、波状和透镜 状层理区别?

(4) 具有特征的沉积层序

双向递变层序 单向递变层序 对偶层双向递变层序 泥岩—鲕粒灰岩——泥岩层序

双向递变层序(a):由下向上 细—粗—细;普遍发育双向交错纹 理,交错层的层系厚度由中部向上 及下减薄。

反映水动力条件的弱—强—弱 变化,其控制因素可能为大潮和小 潮的周期性变化,粒度和层系厚度 的规律性变化可能代表由小潮期至 大潮期再到小潮期的完整旋回。

<u>双向递变层序(b)</u>:由下向 上细—粗—细;中部发育中型低 角度板状交错层,底部和上部发 育小型上叠交错纹理。 反映水动力条件的弱—强— 弱变化,其控制因素可能为长周

期内波与内潮汐叠加引起单向优

势流所致。

由长周期内波 与内潮汐叠加 开成海底水道 中单向优势流 动示意图

单向递变层序(c):下粗上 细;双向交错纹理发育,交错纹理 层系的规模向上逐渐变小;与下伏 泥岩突变接触,与上覆泥质沉积呈 渐变过渡。

形成时的水动力条件可能仍具 有弱—强—弱的变化,可能由于由 弱至强的变化速度过快,使下部早 先形成的细粒沉积被后来的较强的 流动侵蚀掉而缺失下部反递变段。

单向递变层序(d):下粗上

细,底部见深灰色泥砾;下部为 低角度中型单向交错层,上部为 双向交错纹理。

内潮汐与长周期内波的叠加 形成较强的单向底流,侵蚀搬运 海底的沉积物,形成层序底部的 泥砾及下部的单向交错层理;当 内波作用消失而仅发育内潮汐时 形成了上部的双向交错纹理。

对偶层双向递变层序<u>(e):砂泥</u> 薄互层具韵律性;富砂岩段与贫砂岩段 连续过渡:多个砂泥对偶层构成的细— 粗—细双向递变层序;富砂岩段单层厚 度大,贫砂岩段单层厚度小;脉状、波 状和透镜状层理发育。 开阔斜坡上潮流转向形成较长的相 对静止期,悬浮的泥质得以成层沉积。

大潮期形成的砂岩厚,所占比例高;小 潮期形成的砂岩薄,所占比例小。大潮 期和小潮期的逐渐变化导致了富砂岩段 和贫砂岩段逐渐过渡。

泥岩—鲕粒灰岩—泥<u>岩层序</u> (f):鲕粒灰岩上下均与暗色泥 岩直接接触,多为突变接触,顶 <u>界也可呈渐变过渡;鲕粒灰岩中</u> 发育侧积交错层;鲕粒灰岩常与 页岩构成薄互层,且以不同的比 例和形态组合成脉状、波状和透 镜状层理,其中鲕粒灰岩多具双 向交错纹理。

在平坦的斜坡上可能存在一些规模很小的 沟渠,具侧积交错层的单独成层的砂质鲕粒灰 岩可能为小型沟渠侧向迁、加积的结果。

(f)

 \odot

0

 \odot

0

 \odot

0

0

0

0

泥——

20cm

鲕粒灰岩.

(5) 粒度: 泥级 ~ 砂级。在海底峡谷和其他沟谷中以砂级为主, 在平坦开阔的非水道中, 砂级、粉砂级和泥级都有。

(6) 构造:发育各种层理、波痕,典型的 为双向交错层理,缺乏生物扰动构造。

(7)通常出现于海平面上升时期(改造其 他类型的深水沉积物)。

3. 大型沉积物波的发现与成因

深海调查一个引人注目的发现是在世界各 大洋盆地中2000~4500m深海底广泛发育一种大 面积分布的大型沉积物波,包括沙波和泥波, 特别是泥波更为普遍。

Bottom photograph, Scotia Sea, Eltanin7-22, 3146m depth

Bottom photograph, Northern Gulf of Cadiz, 900m depth

Fig. 6. Seabed photographs from two sites in 863 m of water showing modern reworking of sandy contourites on the Geikie Escarpment of the Hebrides Slope (see Figure 1 for location). (a) Rippled contouritic sands with scouring of moats and crag-and-tail development around clasts. (b) Large dropstone clast ($0.5 \text{ m} \times 0.3 \text{ m}$) with well developed gravel lag lies in a field of rippled contouritie sands. Field of view 1.3 m x 3.0 m to top of photograph (Adapted from Howe & Humphery 1995).

Fig. 2. Location of seismic reflection profiles and cores in the northern Rockall Trough and Faroe-Shetland Channel.

Fig. 3. (a) BGS boomer line 85/07-9, showing contouritic sediment waves and elongate sediment drift adjacent to the Hebrides Slope, northeastern Rockall Trough. Location of core 267 indicated. SD, subsidiary drift; ED, elongate drift; M, moat. (b) BGS line 84/06-24, showing the development of a multi-crested drift. Abbreviations as for 3(a). Dotted line represents base of Neogene–Quaternary sediments (Adapted from Stoker *et al.* 1998).

Normark等总结了已报道的30个深海大型 沉积物波发育区的<mark>沉积物波特征</mark>:

●规模:波长0.3~20km,以1~10km最为主;

波高3~140m,以10~100m为主,规模大。

注:表面波的流动层厚度小,即使流动强度 再大也不能形成如此大规模的沉积物波;风 成沙丘的规模之所以比浪成波痕和流水波痕 规模大,主要原因是因为其流动层厚度大。

●对称性:这 些大型沉积 物波大多是 不对称的 但也有一些 是对称的。

●沉积物的搬 运方向:沉 积物波内部 结构反映的 沉积物迁移 方向有向下 坡 迁 移 的 也有向上坡 迁移的。

大型沉积物波的波脊方向多平行于斜坡走向,其迁移方向与等深流方向相垂直,说明它 不是等深流成因的。

同时,这些大型沉积物波规则的外形和内 部结构,也排除了滑塌成因的可能性。

这些沉积特征用等深流理论和重力流理 论都无法解释,而内波、内潮汐理论则可以 将其解释得较为完美。

●表面波海水质点回复力为g,而内波海 水质点的回复力为(₁-2)g/2,分层 水体中的密度差远小于大气和海水的密度 差,这相当于将分层介质置于微重力场 中,其回复力仅为表面波的1‰数量级。

●从能量的观点来看,波幅与重力的平方 根成反比,因此,相同能量可使内波振幅 达到表面波的20~30倍。

●内波发生在深水环境中,其流动层厚度
 巨大,有利于形成规模巨大的沉积物波。

内驻波与前进波:

<mark>内驻波</mark>形成不发生迁移的、两侧对称 的大型沉积物波,主要见于<mark>封闭水体</mark>中。

向上坡方向传播或向下坡传播的内波称为<mark>前进波</mark>,主要发生在<mark>开阔水体</mark>中,形成不对称的沉积物波。

波峰

关于沉积物搬运方向的

解释

●向上坡传播的内波引起沉积物向下坡方 向迁移;

●向下坡传播的内波引起沉积物向上坡方 向迁移。

(1)波峰和波谷处 水质点的运动方向相 反:

●在密度界面之上,波谷处内波流的运动方向与内波传播方向相同;波峰处内波流的运动方向与内波传播方向相反。

●在密度界面之下,波峰之下水的运动方向与内
 波传播方向相同,波谷之下则相反。

(4)因波谷下方水流流向与内波传播方向相 反,故内波引起的优势流动方向与内波传播方 向相反,因而沉积物搬运的总趋势与内波的前 进方向相反。

4. 内波内潮汐的三种沉积模式

(1)水道型沉积模式

沉积发育。B:水道充填阶段示意图。B1:碎屑流为主充填阶段;B2:浊流和颗粒流充填 阶段;B3:内潮汐充填阶段;B4:滑塌充填阶段(据 Gao Zhenzhong and Eriksson,1991)

岩为主。

在水底开阔平坦的环境中,内波引起的水 体能量较弱,流速较低,床沙载荷和悬浮载荷 交替沉积,以韵律性砂泥岩薄互层和具脉状、 波状、透镜状层理和侧积交错层的砂质鲕粒灰

(2)陆坡非水道沉积模式

(3)海底平台沉积模式

深海、半深海中海底平台地形平坦,阻力 较小,内波引起的水体流动可在较大范围内保 持一定的流速,另外,缺乏陆源碎屑物质的海 底平台常以碳酸盐沉积为主,可有硅质沉积物 和火山碎屑沉积,因此该环境形成的上述沉积 物常具有脉状、波状、透镜状层理。

5. 内波内潮汐沉积实例

现代深海大型沉积物波的内波成因新认识,是内波、内潮汐沉积研究的重要进展。

现在,这一新认识已被用来对古代大型沉 积物波的识别和研究,首例地层记录中的大型 沉积物波,已在塔里木盆地中部中上奥陶统中 鉴别出来。

塔中地区3号地震异常体AN94-308测线地震地质解释剖面

等深流的概念
等深流沉积的特征
内波内潮汐的概念
内波内潮汐的沉积特征