

第四节 湖泊相 (Lacustrine Facies)

湖泊(lacus)是大陆上地形相对低洼和 流水汇集的地域。湖泊拦截了由河流搬运的 大量沉积物,是陆上沉积物堆积的重要场 所,同时也是化学沉淀的主要场所。

一、湖泊环境的一般特点

(1)水动力特征:
●波 浪、岸流作
用,与海洋相比,
缺乏潮汐作用。

1-缓坡;2-较陡坡;3-陡坡

(2)物理化学条件: ●湖水的温度分层现象 ●湖水的含盐度变化较大,1~25% ●湖水中的化学成分变化较大

(3) 生物学特征:●淡水湖泊中常发育良好的淡水生物群。

湖泊的盐度分类

方案一		咸水湖泊		
方案二	淡水湖	微咸水湖	咸水湖	盐湖
盐度(%)	0.	1 1	.0 3	3.5

(b)

(a)

湖泊按气候及沉积类型分类 (据维谢尔,1965; Kukal,1971) 1—陆源碎屑沉积型湖泊;2—化学沉积型湖泊; 3—生物沉积型湖泊;4—湖沼沉积型湖泊; 5—干盐湖沉积型湖泊;6—盐沼沉积型湖泊

按照构造性质、湖水盐度和地理位置分 类:(吴崇筠,1993)

构造地四	断陷湖泊		坳 陷 湖 泊		断陷一坳陷过渡过型湖泊	
地理位置湖水盐度	近海湖泊	内陆湖泊	近海湖泊	内陆湖泊	近海湖泊	内陆湖泊
淡水湖	近海断陷	内陆断陷	近海坳陷	内陆坳陷	近海断一坳	内陆断一坳
	淡水湖	淡水湖	淡水湖	淡水湖	过渡型淡水湖	过渡型淡水湖
盐湖	近海断陷	内陆断陷	近海坳陷	内陆坳陷	近海断一坳	内陆断一坳
	盐湖	盐湖	盐湖	盐湖	过渡型盐湖	过渡型盐湖

中国中、新生代湖泊类型(据吴崇筠等, 1993)

三、陆源碎屑湖泊的沉积模式和亚相类型

波浪底部水体运动、粗细物质分布及其与坡降的关系(据任明达, 1985)

1. 湖成三角洲亚相

湖成三角洲:在河流入湖的河口处,流速 降低,水流携带的沉积物便在河口处堆积下 来,形成平面上呈三角形或舌状,剖面上呈透 镜状的沉积体。

湖成三角洲形成过程中河流起主导作用。

在湖泊沉积体中,湖成三角洲的砂体最为 发育,以砂岩和粉砂岩为主。与湖泊沉积的其 他类型砂体相比,面积和厚度大,向湖盆延伸

远,是油气聚集的良好场所。

<u>长江大学地球科学学院</u> <u>School of Geoscience, Yangtze University</u>

三角 沼澤 一 売 売 売 売 売 売 一 売 売 一 売 一 売 一 売 売 売 一 売		冗积		岩性剖面	层理类型	泥岩颜色	岩性组合	沉积构造
前三 前三 帝色泥岩 水平层理、块状层理	三角	三角洲平原 三角洲前缘 前	沼泽 天然堤 分流河道 河口坝 远沙坝 三			红灰	 読(新) 設(新) 設(新) 設(新) 認(新) 認(新) 認(新) 記(新) 記(新) 初) 記(新) 动) 記(新) 动) 記(新) 和) 和)	微波状层理、波状 层理和波状交错层 理及透镜状层理 板状、槽状交错 层理 块状层理、波状 层理 块状层理、波状 层理、板状及错 层理、板状及错 层理 块状层理、波状 层理、板状及槽 状交错 层理、板状 层理、水子层理、水子层理、水平层理、 水平层理、

东营凹陷湖成三角洲沉积层序(据何立琨,1980,略修改)

湖成三角洲的另一种特殊类型为扇三角洲。 霍尔姆斯(Holmes,1965)和梅戈温 (Megowen,1970)认为扇三角洲是从邻近高地 推进到海、湖等稳定水体中的冲积扇。

吴崇筠认为扇三 角洲系指邻近山地的 冲积扇推进到湖中 滨—浅湖地区形成的 扇状砂体。

辽河西部凹陷西斜坡齐欢双地区古近系扇三角洲三带平面图(据陈志勇, 1982)

2. 滨湖亚相

沉积环境特征:

①距岸近,形成粗碎屑沉积:
地形 砂滩、砾滩、泥滩
②水动力复杂,击岸浪和回流
冲刷、淘洗对沉积物改造强烈
③水位浅,时而露出时而淹
没,氧化作用强烈

沉积物:砾、砂、泥、泥炭

结构与构造:

 ●砾石层呈叠瓦状排列,最大扁平面向湖倾, 最长轴多平行于岸线

●砂质主要为石英、长石及一些重矿物,分选、磨圆较好,交错层理、波痕发育,可见 化石碎屑(介壳滩)、潜穴等

●泥质和泥炭沉积中见水平层理,粉砂层具小 波痕层理

●泥裂、雨痕、动物足迹等暴露构造常见

3. 浅湖亚相

沉积环境特征:

●始终位于水下

②水动力主要是波浪和湖流

③水体循环良好,氧气充足, 透光性好,生物繁盛

沉积物:以粘土岩和粉砂岩为主,可夹少量 化学岩薄层或透镜体,物源充分时可出现细 砂岩,砂岩胶结物以泥质、钙质为主

结构与构造:

●分选性和磨圆度较好
 ●以水平层理、波状层理为主,水动力较强时可出现小型交错层理,砂泥层交错沉积时可出现透镜状层理,有时可见对称的浪成波痕

生物化石:生物化石丰富,保存完好,以薄 壳的腹足、双壳类等底栖生物为主,也见介 形虫、鱼类等,少见弱还原条件下自生矿物

若湖底地形平缓,砂质供应充分,在宽阔的浅湖 地带可形成具席状展布的砂质<mark>浅滩</mark>或局部砂质堆 积加厚的<mark>砂坝</mark>沉积(砂质滩、生物滩、鲕粒滩)

●位于湖岸线拐
 弯处的滩坝
 ●水下古隆起处
 滩坝
 ③三角洲侧缘的

滩坝

④开阔浅湖地区的滩坝

<u>
长
认
大
字
地
球
科
字
字
院 School of Geoscience, Yangtze University
</u>

近岸处的波浪强度大,将粗碎屑向湖心搬运;一旦远离湖岸,波浪强度减弱,无法搬运 粗碎屑,使其沉积下来形成沙坝。

演湖和浅湖往往难以分开而合称滨浅湖亚相 ●砂泥频繁互层,砂泥分异较好,成层性明显 ●岩性和厚度的侧向变化快,连续性差

4. 半深湖亚相

<mark>沉积环境:位于波基面以下水体较深部位,地处</mark> 乏氧的弱还原—还原环境,主要受湖流作用影

响,波浪作用难以影响沉积物表面。

岩性:以粘土岩为主,常具有粉砂 岩、化学岩的薄夹层或透镜体。

构造:水平层理为主,间有细波状层理

生物:化石较丰富,浮游生物为主, 保存较好,底栖生物不发育。

自生矿物:可见菱铁矿和黄铁矿等

自然电位曲线	深度(M)	
}	2095	
>	-	
\langle		
}		
\langle		
(
	2113	

5. 深湖亚相

<mark>沉积环境:</mark>位于湖盆中水体最深部位,水体安静,地处乏氧的还原环境,底栖生物不能生存。

<mark>岩性</mark>:岩性粒度细、颜色深、有机质含量高。以 纯泥岩、页岩为主,亦有灰岩、泥灰岩、油页岩

构造:主要为水平层理和细水平纹层。

生物:无底栖生物,常见介形石等浮游生物化石,保存完好。

自生矿物:黄铁矿是常见的自生矿物,多呈分散 状分布于粘土岩中。

分布:岩性横向分布稳定,垂向上常具连续的完整韵律,沉积厚度大。

6. 湖湾亚相

在滨、浅湖地 区,由于砂嘴、砂 坝、水下隆起的障壁 遮挡作用,使近岸水 体受到限制而形成半 封闭的湖湾。

沉积环境:湖湾内水体浅而安静

岩性:主要为暗色粉砂质泥页岩,中夹薄层白云 岩或油页岩。温湿气候下可形成沼泽,发育炭质 页岩和薄煤层。

构造:泥质湖湾中水平层理、季节性韵律层理、 块状层理发育,可见泥裂、雨痕、生物潜穴等; 有间歇性物源注入时,可形成一些正韵律砂体, 发育粒序层理、平行层理、浪成小型沙纹层理等

生物:可见少量特殊的浅水生物(田螺、土星介、轮藻等)

7. 湖泊重力流亚相 洪水型重力流 滑动滑塌型重力流 湖泊重力流沉积的形态呈扇状,形成所谓"湖底 扇"或"深水浊积扇",也可呈层状展布或沿深水 区沟谷,断凹形成重力流水道的长形堆积体。

东濮凹陷下第三系沙三段重力流水道沉积模式

四、陆源碎屑湖泊沉积相组合

1. 沉积相的平面组合 湖泊是流水汇集的 地带, 故在平面上它总 是与河流相沉积共生, 并为河流相沉积所包

韦。

松辽盆地下白垩统青山口组二、三段沉积相图 (据田在艺等,1983)

从盆地边缘至湖盆中 央, 沉积相序大致依次 为冲积扇、河流—湖成 三角洲、滨浅湖、半深 湖、深湖和重力流。

2. 沉积相的垂向组合

湖泊沉积的垂向组合受地壳升降运动控制。

湖泊发展的总趋势,在多数情况下都是<mark>以退</mark> 缩、充填而告终。

因此,湖泊相的垂向组合,往往是以较深湖 或深湖亚相开始,向上递变为滨湖和河流相沉 积,构成下细上粗的反旋回垂向层序。

坳陷湖盆深陷扩张期砂体展布示意图(据吴崇筠,1994)

断陷型湖泊收缩期沉积相示意图(据吴崇筠等,1993)

坳陷湖盆抬升收缩期砂体展布示意图(据吴崇筠,1994)

		颜	岩剖	层	构	岩性曲线 砂砂粉砂泥油石盐	自生	指相	相	升降曲线	相带分布	生
地层		色	性面	理	造	研切初切花田石盖 砾砂泥灰 岩岩岩岩)岩膏岩	矿物	化石	类型	水平面	示意	储盖
	12	3	• • •		*		29 29		滨湖 亚相 氧化浅湖		河 滨 流	11
五		9		1	**	2	8	06	亚相	$ \downarrow \rangle$	相	1
	11	9 5 9		新编员联邦	-			00 000 ((弱还原浅 湖亚相		潮氧	Ň
	10	3		A le Annual	* ***		1 00 1 000 1 0000 1 0000 1 0000 1 00000 1 0000000000		氧化浅湖 亚 相 还原浅湖 亚 相		<i>ℓ</i> ℓ [₩]	(1)(生(盖)))
四-	9	13 13			7		89 (6.0	还原浅湖 亚 相 半深湖 亚 相		还	1 油田 居日
	8	3 14 8 8			1 8 3 *		8	((66	滨湖亚相 氧化浅湖 亚 相		原浅	催
Ξ	7	14 8 12 8		MI WE ARK	3 * 1		© Ø © 10 10 10 10 10 10 10 10 10 10 10 10 10	сс # СС	氧化浅湖 _亚相_ 沼泽化浅 湖亚相			11.00月0.00
	6	13 13 13		制 日 制 日	• •	N		8 8 8 8 8 8	还原半深 湖亚相		浅	
_	5	13 13 13 13		第十四日日	8 ¥ 8	W	0::	.	还原半深 湖亚相		还 原	1年(金)=泊
_	4	13 12 12 5		(II # #	₽	X	82929		还原半深 湖亚相		半 深 湖	
	3	5 13 12 13		ANN MARK	Ø + \$ @			00	还原半深 湖亚相		亚亚亚	ľ
-	2	13 3				MM	10.0	٩	咸亚湖 亚 相		相滅湖	
	ι	3					000		氧化浅湖 滨湖亚相		亚河相(流相	

五、陆源碎屑湖泊相的鉴别标志

1. 岩石类型

以粘土岩、砂岩和粉砂岩为主,砾岩少

- <mark>见</mark>,也可出现化学岩和生物化学岩,但分布较
- 为局限。
- 2. 沉积构造

层理发育,以水平层理最为发育。 可有较发育的波痕,泥裂、雨痕、搅混构 造亦常见到。

3. 生物化石

常见的生物种类有介形虫、双壳类、腹足

- 类、藻类等。陆生植物的根、干、叶、孢子花
- 粉等大量出现。
- 4. 垂向层序
- 多见深湖至滨湖的下细上粗反旋回层序。 5. 分布范围及沉积厚度

分布范围比河流相大,比海相小,相带、 岩性和厚度大致呈<mark>环带状分布</mark>。岩性和厚度横 向变化比河流相稳定,比海相差。

六、陆源碎屑湖泊相与油气的关系

碎屑湖泊相常具有油气生成和储集的良好条件

目前我国发现的绝大多数油气田,如大庆、 胜利、辽河、大港、中原、南阳、江苏、江汉等 油田都分布在碎屑湖泊相沉积中。

深湖和半深湖亚相水体深,地处还原或弱还原环境,适于有机质的保存和向石油的转化,是良好的生油环境,在这种环境中形成的 暗色粘土岩可成为良好的生油岩。

碎屑湖泊沉积中发育各种类型的砂体,如三 角洲砂体、深水浊积扇砂体、滨浅湖滩坝砂体 等,具分布广、厚度大、近油源、粒度适中、生 储盖组合配套等特点,是油气储集的良好场所。

湖泊砂体类型

	浊积砂体	三角洲砂体	扇三角洲砂体	水下冲积扇砂体	滩坝砂体	
沉积 环境	深湖 - 半深湖	湖盆缓坡,河流入湖 处。岸上-滨浅湖- (半深湖)	湖盆陡坡,冲积 扇进入湖处,岸 上 - 滨浅湖 - (半深湖)	凸起边缘滨浅湖	滨浅湖地区	
泥岩 特征	暗色深湖相质纯泥岩	红黄 - 浅灰、灰绿 - 灰 色不纯泥岩	红黄-浅灰、灰 绿-灰色,不纯 泥岩	灰绿、浅灰色不 纯泥岩为主	浅 灰 、 灰 绿 色 不纯泥岩	
沉积 作用	浊流(和其它水下沉积 物重力流)	河流-河湖交互-湖泊 沉积作用	河流 - 河湖 - 湖 泊沉积作用	河流-湖泊沉积 作用	湖 浪 、 岸 流 作 用	
岩类层构	暗色深湖泥岩夹正递变 砂砾层)。粗砂 砾浊石岩 - 细粒 、 和 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一	砂泥岩。三层(带)结 构:三角洲平原:水上 分流河道沉积和漫滩沼 泽沉积。三角洲前缘:a ·水下分流河道-正韵 律厚砂层;b-河口沙坝 ·反韵律厚砂层;c-席 状砂和泥岩互层。前三 角洲泥:半深湖砂泥薄 互层	砂层三上冲角河叠河前、小小、小、小、小、小、小、小、小、小、小、小、小、小、小、小、小、小、小、	砂无为的根扇叠灰层、水叠:中合色下。水叠:中合色、水叠:中合色、水叠:中合的、水。、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	砂与层薄层席厚狭线有岩泥。、,状、长平湖和岩滩频和坝层带,阔粉频:繁大:少与之相繁、、、层、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	
砂体 形态	扇形、透镜、条带、席 状(平面)	透镜体(纵剖面)	楔状体、透镜状 (纵剖面)	楔 状 或 透 镜 状 (纵剖面)	席 状 、 条 带 状 、 透 镜 状 (平面)	

湖泊砂体类型

<u>长江大学地球科学学院</u> School of Geoscience, Yangtze University

	浊积砂体	三角洲砂体	扇三角洲砂体	水下冲积扇砂体	滩坝砂体
分布 位 和 型	近岸浊积扇砂体,远岸 浊积扇砂体,断槽浊积 砂体,近岸浅水砂体前 方的扇或透镜体砂体, 水下局部隆起的浊积砂 体,湖中央的席状或水 道状浊积砂体	长河流三角洲,短河 流三角洲,水退型三 角 洲 ,水进 型 三角 洲,伸长状三角洲, 平直型三角洲近深湖 区的三角洲 区的三角洲	湖盆短轴陡岸靠 山型扇三角洲靠 扇型扇三角洲	凸起边缘坡度中 等的滨浅湖地带	湖盆边缘或水下局 部隆起边缘缓坡港 浅水带,远离大河 入口。水退型: 大变粗层序(反旋 回) 生变组层序(正旋 回)
主要 发育 阶段	湖盆最大深陷期	湖盆深陷后的抬升期	湖盆深陷后抬升 期	湖盆水进阶段	湖盆扩张微陷期, 湖面积大,水浅, 底平缓
相邻 砂体	近岸浅水砂体、断崖湖 岸	向岸:河流泛滥平原 向湖:浊积透镜体向 侧:滩坝	向岸:老山、冲 积扇向湖:浊积 砂体	向岸:凸起老山 向湖:浊积岩体 向侧:湖滩	向侧:三角洲等近 岸砂体 向湖:浊流(较少 见) 向岸:沼泽、河流
与似体 区 别	近岸浊积扇与扇三角洲 易 混 淆 , 区 别 是 : (1)近岸浊积扇是深 水沉积,扇三角洲是深 水沉积;(2)近岸浊 和扇无三角洲片之 。 和同无三角 》 切 之 。 (3)浊 。 昭 色 泥 岩 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	与扇三角洲的区别 是:(1)三角洲分布 于湖盆缓原;(2)扇 三角洲分布于湖盆。 主角洲分布于湖盆扇 轴陡坡,背靠冲积扇 或物源老山,沉积物 比(1)粗	与水下冲积扇的 区别是:有三角 洲平原相的水上 沉积部分和水下 三角洲前缘带的 多种特征砂体	见左,无水上沉 积部分,砂层均 呈 向 上 变 细 层 序,背靠老山	与三角洲前缘的砂 泥互层易混淆,区 别 是 远 离 大 河 入 口,无三角洲平原 相配套

在湖泊的演过程中,湖泊下陷扩张期,湖盆 大幅度持续稳定下沉,有利于深湖、半深湖亚相 的发育;湖盆的抬升和收缩,有利于三角洲、滨 浅湖滩坝等储油砂体的形成。湖泊发育的多旋回 性,导致垂向剖面上可出现多个生储盖组合。

●湖泊的水动力特征 ●湖泊的亚相划(重点) ●湖泊各亚相的沉积特征(重点) ●陆源碎屑湖泊与油气的关系 湖泊相的鉴别标志