

第三节 河流相 (Fluvial Facies)

一、河流的分类

1. 按照地形及坡降:山区河流、平原河流

2. 按照发育阶段:幼年期、壮年期、老年期河流

3. 按照分叉参数和弯曲度:平直河、蛇曲河、 辫状河、网状河

分叉参数:在每个平均蛇曲波长中河道沙坝的数目。(单河道 1,多河道 >1)

弯曲度:河道长度与河谷长度之比。(低弯度) 河 1.5或1.3,高弯度河 > 1.5)

河流分类 (据拉斯特,1978)							
弯 度	单河道(河道分岔系数<1)	多河道 (河道分岔系数>1)					
低弯度(弯度指数≤1.5)	平直河	辫状河					
高弯度(弯度指数>1.5)	曲流河 (蛇曲河)	网状河					

河流类型

(据迈尔,1977)

A. 曲流河; B. 辫状河; C. 网状河; D. 平直河。

4. 按照构形要素分为12种模式 (Miall)

河流沉积中的构造单元(据 A.D. Miall, 1988 年)						
构形单元	符号	主要岩相组合	几何形态及相互关系			
河道	СН	任意组合	指状、透镜状;上凹侵蚀基底;规模和形态 变化很大;内部第二次侵蚀面普遍			
砾石坝和底形	GB	Gm、Gp、Gt	透镜状,毯状;通常为板状体;夹 SB			
砂底形	SB	St _y Sp _y Sh _y Si _y Sr _y Se _y Ss	透镜状、席状、毯状、楔状;存在于河道充填中, 决口扇、沙坝扇、沙坝顶、小沙坝			
顺流加积 的大型底形	DA	St,Sp,Sh,Si,Sr,Se,Ss	位于扁平状或河道基底之上的透镜体, 内部和顶部夹有向上凸的3级界面			
侧向加积沉积	LA	St、Sp、Sh、Si、Sr、 Se、Ss、G和F少见	楔状、席状、舌状,具有内部侧向加积的特征			
沉积物重力流	SG	Gm、Gms	舌状、席状,通常夹有 SB			
纹层砂席	LS	Sh、Si、少量 St、Sp、Sr	席状、毯状			
越岸细粒沉积	OF	Fm ₅ Fi	薄至厚毯状;通常夹有 SB,可能充填有废弃河道沉积			

5. 按照结构—成因分类(于兴河, 2002)

河流的结构一成因分类(据于兴河,2002)						
	일 이 생활 이 사람이.	低弯度	辫状	近源砾石质辫状河		
				远源砾石质辫状河		
	砾石质河流	百 亦 府	蛇曲状	近源砾石质曲流河		
		高弯度		远源砾石质曲流河		
			间歇性砾石质河流			
流		低弯度	辫状	近源砂质辫状河		
				远源砂质辫状河		
	砂质河流					
		高弯度	蛇曲状	近源砂质曲流河		
				远源砂质曲流河		
				网状河		
		间歇性砂质河流				

二、不同类型河流的基本特征

1. 顺直河 (Straight River)

(1) 单河道、低弯度(1.3或1.5)

(2)特殊的构造背景和地理条件:断层槽或植被发育 形成坚固的河岸

(3)只在大型河流的某一段内短距离发育,一般少见

(4) 凹岸侵蚀, 凸岸加积, 侧向迁移逐渐形成曲流河

(5)底部的流速最低,中线的流速最高,主流线两侧 形成两个对称的环流,表面流由两岸向中部壅水

2. 曲流河 (Meandering River)

(1) 单河道、高弯度(>1.5), 宽/深<40, 较稳定

(2)一般发育于中下游平原地区

(3)坡度较缓,流量稳定,搬运方式以悬浮和混合负载为主,沉积物以较细的泥、砂为主

(4) 凹岸侵蚀, 凸岸加积, 侧向迁移形成二元结构

(5) 典型亚相有牛轭湖、边滩、天然堤、决口扇、泛 滥平原

3. 辫状河 (Braided River)

(1)多河道、低弯度(<1.5),宽/深>40,不稳定

(2)一般发育于上游、 山区或冲积扇上

(3)坡降大,流量不稳 定,搬运方式以底负载为 主,沉积物以较粗 (4)心滩为典型亚相, 天然堤和决口扇不发育

4. 网状河 (Anastomosing River)

- (1) 多河道、高弯度(> 1.5) , 窄而深, 稳定
- (2)一般发育于河流中下游
- (3)坡降小,流量稳定,搬运方式以悬浮负载为主
 (4)冲积岛、泛滥平原或湿地为典型亚相,由细粒物质河泥炭组成,占据了60%~90%的地区

长江大学地球科学学院 School of Geoscience, Yangtze University

(1)河床亚相 河床:河谷中经常流水的部分。

●河床滞留微相

河床滞留沉积是河流流量最高时短距离搬运的产物,以<mark>砾石级粗碎屑</mark>为主、砂和粉砂极 少,这些物质集中堆积形成不连续透镜体。

2边滩微相

边滩沉积是河流侧 向迁移和沉积物侧 向加积的产物。

Cross section

以<mark>低成熟度的砂岩</mark>为主,不稳定组分多, 长石含量高。

自下而上呈现由粗变细的正旋回

a. 切过边滩的横剖面 b. 垂向沉积系列

(2)堤岸亚相●天然堤微相

侧蚀作用使凹岸天然堤难以保存,古天然 堤呈面状分布于边滩之上;主要为细砂岩、粉 砂岩、泥岩,比边滩细,比河漫滩粗;见干 裂、雨痕、根迹等暴露构造。

❷决口扇微相

主要岩性为细砂岩、粉砂岩,粒度比天然堤稍 粗;具小型交错层理、波状层理及水平层理,冲蚀与 充填构造常见;横剖面呈透镜状。

(3)河漫亚相

●河漫滩微相

●以粉砂岩为主,也含粘土岩

●垂向上有向上变细的趋势

●波状层理和斜波状层理为主,也见水平层理

●干裂、雨痕等暴露构造常见

2河漫湖泊微相

以粘土为主,有粉砂出现;见薄水平纹层、泥裂、干 缩裂缝;潮湿区生物化石常见,干旱区可形成盐湖。

3河漫沼泽微相

由潮湿区河漫湖泊发展而来,沉积特征与河漫湖泊 类似,只是泥炭沉积较多。

(4) 牛轭湖亚相 a.曲颈取直

b. 串沟取直

串沟取直和曲颈取直作用 及其沉积层序(据沃克,1976) V.A—垂向加积;AB.—河道废弃期沉积; ACT.—活动河道沉积

为什么荆州长江大桥能够建在凹岸—凸岸之间?

			粒度		岩性	沉积构造				
		0.0	砾	粗砂	中砂	御司	粉砂	泥		
河漫 滩沉 积	河漫滩沉积	20m							泥岩 粉砂岩	水平层理 块状层理 钙质结核 植物根系
河道	边滩沉积	3-		×					细砂岩	小型交错层理 爬升波痕层理
沉积									中粗粒砂岩	中一大型板状、 槽状交错层理
	河床沉积								含砾砂岩、粗砂岩	
		0.00.000	TIIII						河床滞留沉积(砾岩)	平行层理
		侵蚀底面								

曲流河沉积层序 (据 Klein, 1972 和 Allen, 1970)

四、辫状河的沉积模式

游荡性河流 天然堤、决口扇、泛滥平原不发育 边滩和牛轭湖不发育——与曲流河的区别 典型亚相为心滩

P曲流沙坝D 斜向沙坝L 纵向沙坝T 横向沙坝

加拿大魁北克泥盆 纪辫状河沉积的垂向层序 (据沃克和坎特, 1976) F:波状交错层、水平层理(薄的粉 砂岩及泥岩) E:小型槽状交错层理(细砂岩) D:小型板状交错层理(细砂岩) C:大型板状交错层理(中-粗砂 岩) B:大型槽状交错层理(粗砂岩) A:不清晰的大型槽状交错层理(含 砾粗砂岩)

SS:底部为冲刷面,之上为滞留砾岩

辫状河垂向层序不同于曲流河之处:

●二元结构的底层沉积发育良好、厚度大, 顶层沉积不发育或厚度小; ●底层沉积粒度粗,砂砾岩发育; ●河道频繁迁移形成了各种层理类型,如块 状或不明显的平行层理、巨型槽状交错层 理、单组大型板状交错层理等。

Figure 7-12a General stratigraphic models for gravel-dominated braided streams. (From Miall, 1978, p. 600.)

五、网状河的沉积模式

网状河各类亚环境沉积特征

环境 类型	主要岩性 及粒度特征	沉积构造特征	形态特征
河道	以各种粒度的砂 岩为主 ,底部常含 有细砾及薄层砾 岩	下部多为块状构造, 发育大型槽状交错 层理,中、上部以小 型槽状交错层理为 主,顶部可见水平层 理。	平面上为弯曲的鞋 带状,剖面上呈窄而 厚的墙状砂体,两侧 与漫滩细粒沉积物 的接触面近于垂直。
天 然 堤	以粉砂岩、泥岩为 主,并夹有薄层细 砂岩	发育水平层理和小 型砂纹层理,	剖面上为楔形或三 角形 ;平面上呈条带 状。
泛滥平原	以泥岩、粘土岩、 砂质泥岩和粉砂 岩为主夹有泥炭 层。	发育水平层理	被条带状河道砂体 围限的块状

不同类型的河流沉积识别标志对比 _{流河}

河流	曲流河	辫状河	网状河
亚相	点砂坝	心滩(坝)	网状河道
岩性	以砂、泥岩为主 , 一般 砾岩层较薄	以砂、砾岩为主 , 常发育厚层 的砾岩和含砾粗砂岩	以粉砂岩、泥岩为主 , 砂、 砾岩次之
剖面 组合	"砂泥互间"	"砂包泥"	"泥包砂"
垂向 层序	典型的正韵律结构	正韵律结构,细粒沉积薄,或 缺失。	不明显的正韵律结构
沉积 构造	多种多样,以下切型板 状交错层理为典型标志	发育各种大型槽状、板状交错 层理,常见块状层理,一般缺 乏小型砂纹层理	以槽状交错层理和水平层理 为主
粒度概 率分布	以二段式为主	以三段式为主	以二段式为主
平面 砂体 形态	单个砂体为弯曲的条带 状;曲流带复合砂体为 平板状	平面上:单个砂体为低弯度条 带状;河道带砂体为板状或宽 条带状。剖面上:单砂体和河 道带砂体为透镜状。	平面上:窄条带状,交织、 扭结成网状。剖面上:为直 立或倾斜的窄而厚的墙状, 相互分隔远离
厚度 规模	中厚层状;范围:几 米~十几米	中厚层状—厚层状;范围:几 米~几十米	中层状;范围:几米~十几 米
砂体 叠置	单边或多边式侧向叠置	多层式垂向叠置	孤立式

六、河流沉积组合

不同类型河流沉积组合的分布关系图 (据盖洛韦, 1983)

湖岸位置与砂体类型和演变关系示意图(据吴崇筠,1992年)

七、古代河流的主要鉴别标志

(1)岩石类型及成分:以砂岩和粉砂岩为主。成分 成熟度低。砾岩多为复成分砾岩,砂岩以长石砂岩、 岩屑砂岩为主。以泥质胶结为主,少量为钙、铁质胶 结。

(2)结构构造:以砂、粉砂状结构为主,分选差至 中等。层理发育,以板状和大型槽状交错层理为特 征。砾石呈叠瓦状排列,扁平面倾向上游。层理及砾 石倾角约为10~30 。底部常具冲刷构造,并常含泥 砾及下伏地层的砾石。 <u>(3)生物化石:一般无动物化石,</u>可有植物碎片及 硅化木等。

School of Geoscience, Yangtze University

构

错砂

<u>学院</u>

(4) 剖面结构及砂体形态

自下而上 表现出下粗上 细的间断性正 韵律或正旋 回。每个旋回 底部发育有明 显的底冲刷现

曲流河相:具有完整的"二元结构"。主要

由槽状、板状交错层理砂岩和波纹交错层理粉

细砂岩、泥岩等组成,有明显向上层理变薄、

岩性变细的特征。在剖面上,呈上平下凸的透

镜状或板状嵌于四周河漫泥质沉积之中。

辫状河相:砂岩分布较广,主要由大型槽 状交错层理砂岩等组成,缺乏粉砂、泥质层。

(5)测井曲线形态

具有正韵律,底部滞留层与下覆层呈突变关系

八、河流沉积与油气的关系 我国中新生代含油气盆地的探明储量中,河流砂体的 储量为46%

岩性油气藏

生油

•按照分叉参数和弯曲度进行河流分类 •曲流河的亚相划分、各亚相的沉积特征(重点) •比较辫状河、曲流河、网状河的基本特征

古代河流的鉴别特征