




### 碎屑岩的结构是指碎屑岩内各结构组分的 大小、形状以及空间组合方式。



一、碎屑颗粒的结构 ( Textures of clastic grains )

碎屑颗粒的结构特征一般包括:粒度、球度、形状、圆度、颗粒的表面特征。

- (一)粒度(Grain size)
  - 1. 粒度的概念

粒度—是指碎屑颗粒的大小。

粒度是碎屑颗粒的最主要的结构特征,直接决定着岩石的类型和性质,是碎屑岩分类命名的重要依据。



#### 表示粒度,可用线性值和体积值

体积值:可用标准直径(dn)表示,代表着与颗粒同体积的球体直径。

线性值:直观度量出来的颗粒的长、中、 短直径 $d_L$ (A)、 $d_I$ (B)、 $d_S$ (C)线性值。

d 外切矩形 颗粒

最大投影面

#### 2. 粒级的划分

(1) 伍登—温特华斯(Udden-Wentworth)的划分方案,2的几何级数制。它是以1mm为中心,乘以2或除以2来进行分级的。

0.0625 0.125 0.25 0.5 1 mm

#### (2)十进制划分方案,在我国应用较广

泛。



0.0001 0.001 0.01 0.1 1 10 100 1000 mm

#### 常用的碎屑颗粒粒度分级表

| 十进        | 生制       | 2       | 的 几 何 级 数 | 制             |
|-----------|----------|---------|-----------|---------------|
| 颗粒直径,mm   |          | 粒 级 划 分 |           | 颗粒直径,mm       |
| > 1000    | 巨 砾      | ,       | 巨 砾       | > 256         |
| 1000~100  | 粗 砾      | ZП.     | 中砾        | 256~64        |
| 100~10    | 中 砾      | 砾       | 砾 石       | 64~4          |
| 10~1      | 细砾       | 341     | 卵 石       | 4~2           |
| 1~0.5     | 粗砂       |         | 极粗砂       | 2~1           |
|           |          |         | 粗砂        | 1~0.5         |
| 0.5~0.25  | 中砂       | 砂       | 中砂        | 0.5~0.25      |
|           |          |         | 细砂        | 0.25~0.125    |
| 0.25~0.1  | 细砂       |         | 极细砂       | 0.125~0.0625  |
| 0.1~0.05  | 粗 粉 砂    | Wi Til  | 粗 粉 砂     | 0.0625~0.0312 |
|           |          |         | 中粉砂       | 0.0312~0.0156 |
| 0.05~0.01 | Am W Tol | 粉砂      | 细粉砂       | 0.0156~0.0078 |
|           | 细粉砂      |         | 极细粉砂      | 0.0078~0.0039 |
| < 0.01    |          | 粘 土 (泥) |           | < 0.0039      |
|           |          |         |           |               |



### (3)中国石油天然气集团公司标准—— 石油行业碎屑颗粒粒度分级标准。

| 粒 级 | 粒 径 , mm |
|-----|----------|
| 砾 石 | >2       |
| 粗砂  | 0.5~2    |
| 中砂  | 0.25~0.5 |
| 细砂  | 0.1~0.25 |
| 粉砂  | 0.03~0.1 |
| 杂 基 | < 0.03   |



## (4) 克鲁宾(Krumbein, 1934)将伍登—温特华斯的粒级划分转化为 值:

 $= -\log_2 D$ 

| "D"与"φ"的换算关系 |       |                  |       |  |  |  |
|--------------|-------|------------------|-------|--|--|--|
| D, mm        |       | $D=2^n$          | . H:  |  |  |  |
| 小 数 式        | 分 数 式 | D=2              | · φ 值 |  |  |  |
| 8            | 8     | $8 = 2^3$        | -3    |  |  |  |
| , 4          | 4     | $4 = 2^2$        | -2    |  |  |  |
| 2            | 2     | $2 = 2^{1}$      | -1    |  |  |  |
| 1            | 1     | $1 = 2^0$        | 0     |  |  |  |
| 0.5          | 1/2   | $1/2=2^{-1}$     | 1     |  |  |  |
| 0.25         | 1/4   | $1/4=2^{-2}$     | 2     |  |  |  |
| 0.125        | 1 / 8 | $1 / 8 = 2^{-3}$ | 3     |  |  |  |

值优点:整数、正数(粗砂以下)、作图方便

#### 3. 碎屑岩的粒度分类及命名

- (1) 三级命名法:
- 50%的粒级定为岩石的主名,即基本名;
- ●介于50-25%之间的粒级以形容词"××质"的形式写在基本名之前;
- ●25-10%的粒级作次要形容词,以"含××"的形式写在最前面;
- ●含量<10%的粒级一般不反映在岩石名称中。

(2)复合命名:若碎屑岩的粒度分选较差,所含粒级较多,没有含量>50%的粒级,而含量介于50~25%的粒级又不止一个,进行复合命名,以"××—××岩"的形式表示,含量较多的写在后面。

(3)若碎屑岩的粒度分选更差,粒度含量均<25%,则应将此岩石的全部粒度组分分别合并为砾、砂和粉砂三大级别,然后按前两条原则命名。

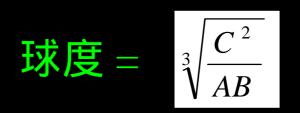
◆中砂占55%,粗砂占30%,砾石占

10%, 其它占5%

#### 命名:

◆中砂36%,细砂48%,粉砂16%

#### 命名:


◆细砾16%,中砾12%,粗砂20%,中砂18%,粗粉砂12%,粘土22%

#### 命名:

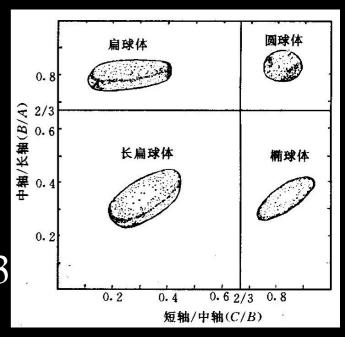
#### (二)球度(Sphericity)

球度是一个定量参数,用它来度量一个颗粒近于球体的程度。

1958年斯尼德和福克(Sneed and Folk)提出了最大球度投影法,用以确定球度参数数值。它是用与颗粒体积相同的球体的横切面积与该颗粒的最大投影面积的比值求得的。



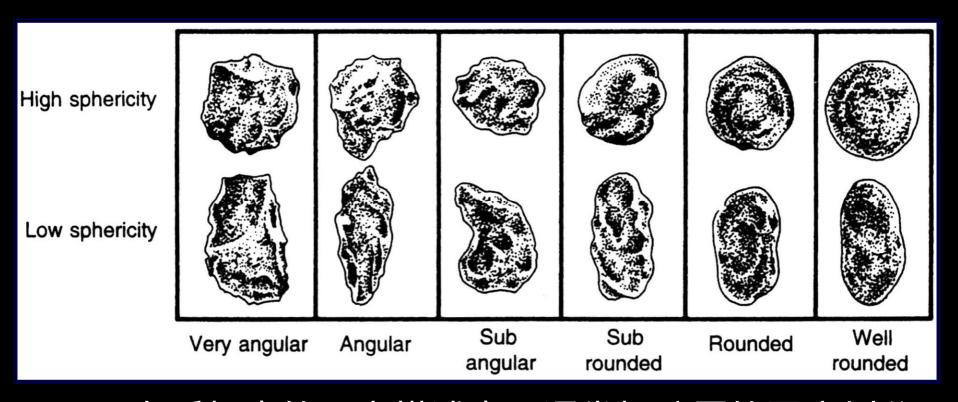
颗粒的三个轴愈接近相等,其球度愈高;相反,片状和柱状颗粒都具有很低的球度。


- ●在悬浮搬运组分中,球度小的片状颗粒最容易被漂走。
- ●在滚动搬运组分中,只有球度大的颗粒才最 易沿床底滚动。

#### (三)形状(shape)

颗粒的形状是由颗粒中A、B、C三个轴的相对大小决定的。

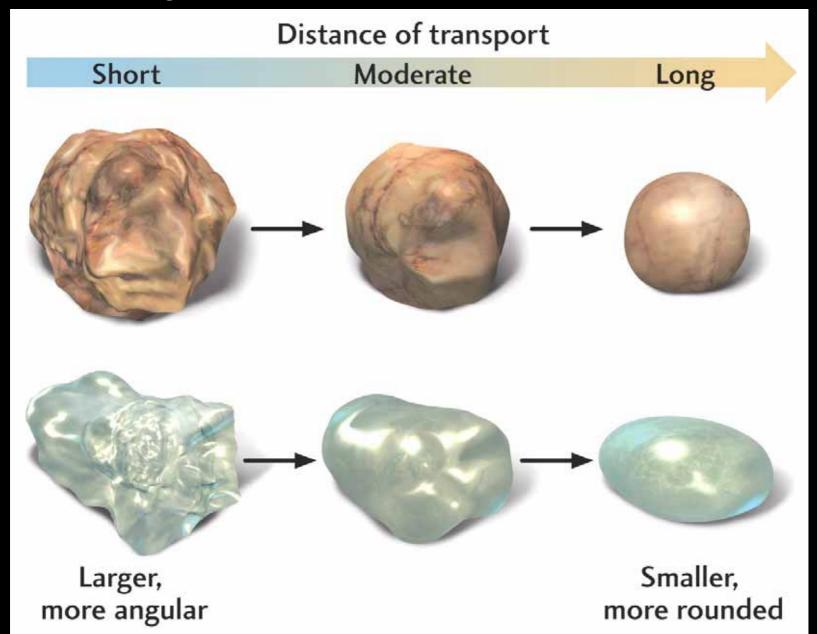
辛格(Zingg, 1935)根据颗粒A、B、C三个轴的长度比例,将颗粒划分为四种形状:

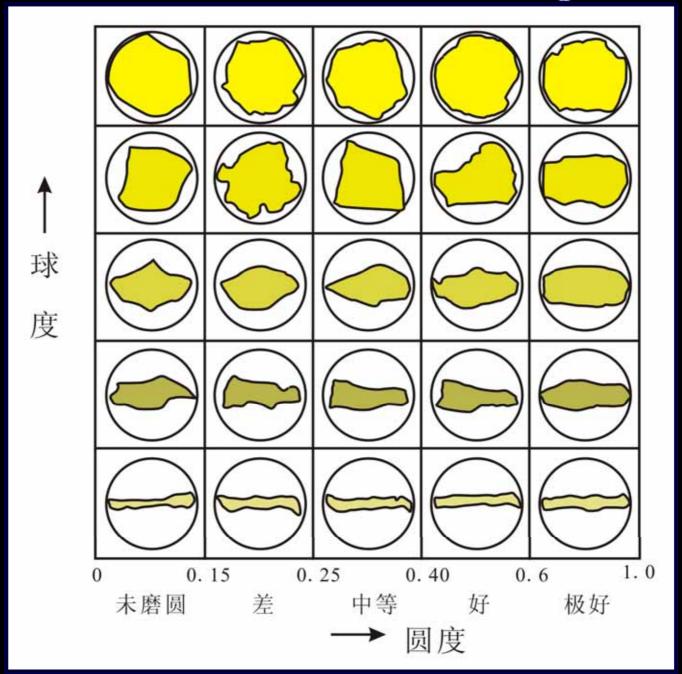

- 圆球体:B/A>2/3 , C/B>2/3
- 椭球体: B/A<2/3, C/B>2/3
- 扁球体:B/A>2/3 , C/B<2/3
- 长扁球体:B/A<2/3 , C/B<2/3





#### (四)圆度(Roundness)


#### 圆度—指碎屑颗粒的原始棱角被磨圆的程度




在手标本的观察描述中,通常把碎屑的圆度划分

为4个级别:棱角状、次棱角状、次圆状、圆状

#### Rounding ...



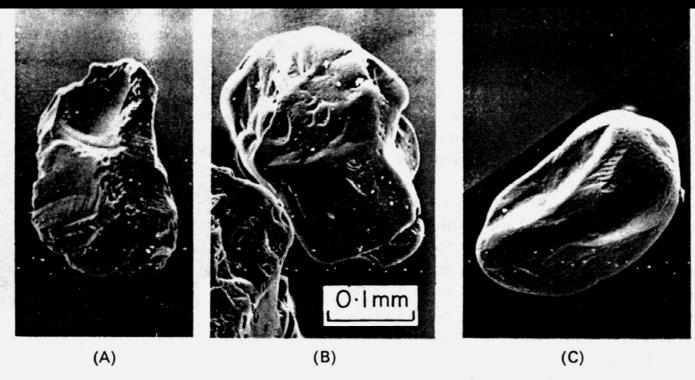




#### (五)颗粒的表面结构(Surface texture of grains)

表面结构是碎屑颗粒表面的形态特征,一般主要观察表面的磨光程度及表面刻蚀痕迹两个方面。

研究方法:电子显微镜能够识别的环境有 滨海、风成、冰川等环境。


(1)霜面似毛玻璃,在反向光下看,表面模糊不清,一般认为是沙丘石英颗粒的特征。

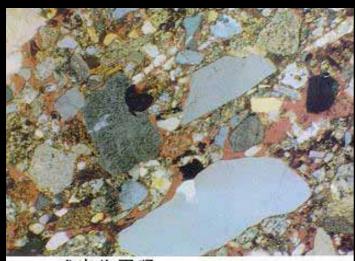
SEM photomicrograph of sand grain from a stream deposit ( Quaternary ), Grandfather Mountain, North Carolina.



(2) 磨光面是光滑的磨亮的表面,如河流的石英砂,海滩石英砂。

- (3)刻蚀痕迹由碰撞作用造成,如冰川作用。
- (4)在海滩带及海的近岸地带,石英砂粒表面具有机械成因的"V"形坑。




Scanning electron micrographs of quartz sand grains from three modern environments. A, Grain from glacial outwash deposit, Ottawa, Canada, showing conchoidal fractures and angular shape; B, Grain from high-energy beach, Sierra Leone, West Africa, showing rounded shape and smooth surface with small v-shaped percussion marks; C, Grain from desert sand sea, Saudi Arabia, showing frosted, pock-marked surface (due to upturned plates which are visible at higher magnifications) and conchoidal fractures due to mechanical chipping.



#### 二、填隙物的结构

( Textures of interstitial materials )

#### 碎屑岩的填隙物包括杂基和胶结物。

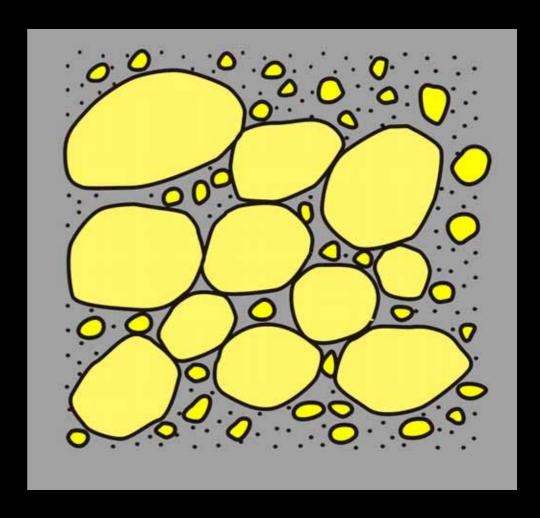


成岩作用弱 不等粒砂岩(含油) 颗粒呈 点、线接触,胶结松。正交偏光+试 板,×80。

侏罗系,克拉玛依油田重17井 543.1m。



细-中粒石英砂岩 硅质胶结,呈自形晶粒状加大,加大后残余粒间孔。红色铸体,单偏光,×95。 侏罗系延安组,长庆油田元16井1361.6m。




#### (一)杂基(Matrix)

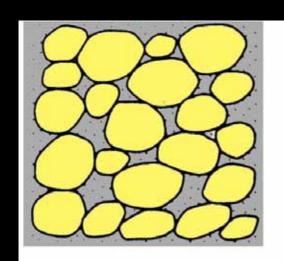
(1) 定义: 碎

屑岩中与粗碎屑一 起沉积下来的细粒 填隙组分,粒度一 般 小 于 0.03mm

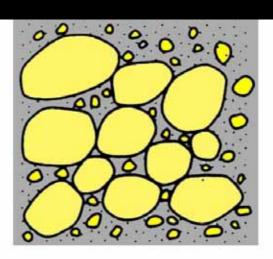
**(**>5).



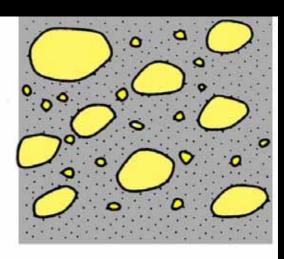



对于更粗的碎屑岩,如砾岩,杂基也相对变粗,除泥以外,还包括粉砂甚至砂级颗粒。




冲积扇 扇根部位砾石呈扁平状排列。 云南五里桥冲积扇。

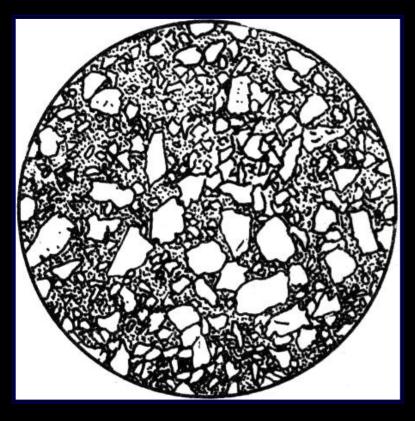



(2)地质意义:杂基的含量和性质可以 反映搬运介质的流动特性,反映碎屑组分的分 选性,也是水动力强度的重要标志,是碎屑岩 结构成熟度的重要标志。



Clast-supported, bimodal, matrix well sorted




Clast-supported, polymodal, matrix poorly sorted



Matrix-supported, polymodal, poorly sorted



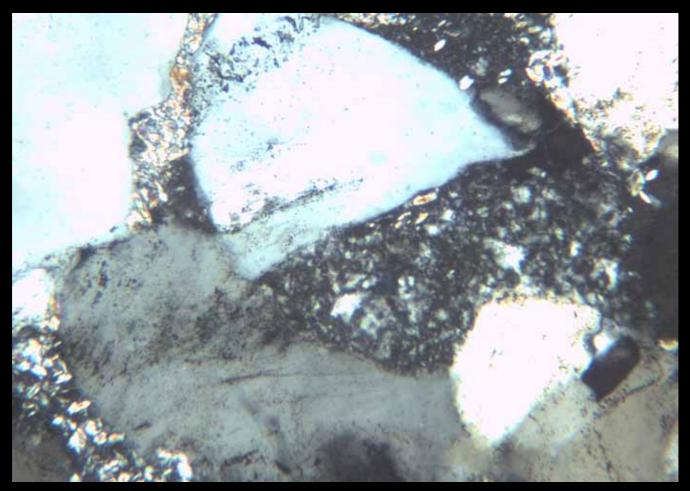
## (3)杂基成分:多为粘土矿物,有时见有灰泥、云泥及一些细粉砂碎屑颗粒。



杂基成分为粘土和灰泥

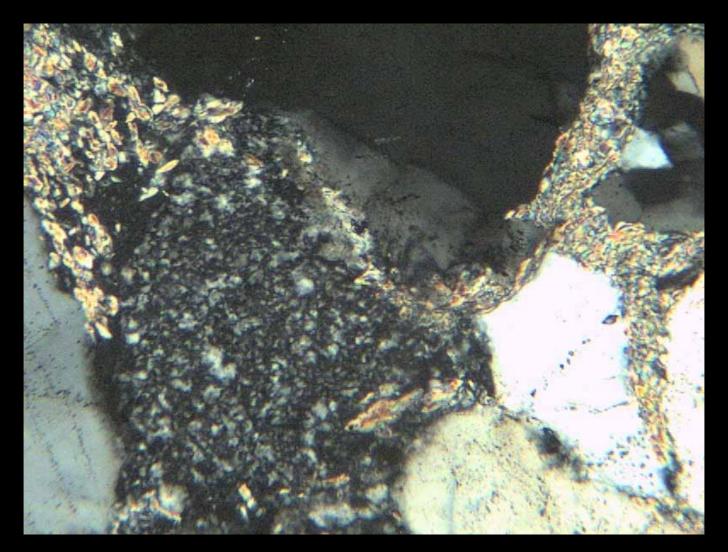


杂基伊利石化 含泥细粒岩屑砂岩 黑云母被 挤压弯曲,并被菱铁矿交代,杂基伊 利石化。正交偏光,×200。


二叠系山西组,沁水盆地沁参1 井1107.7m。



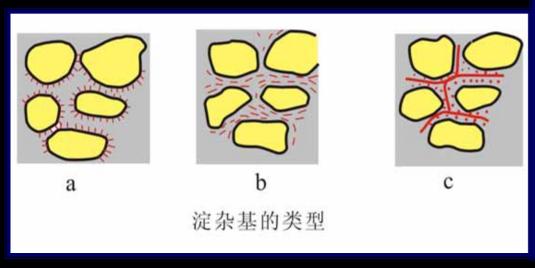
#### (4)杂基的类型

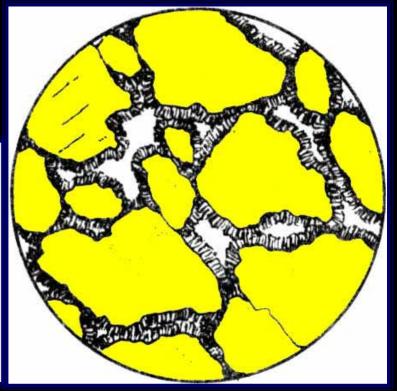

#### 原杂基—代表原始沉积状态的杂基,泥质

结构。



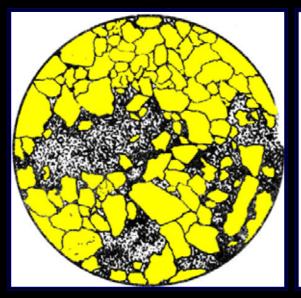


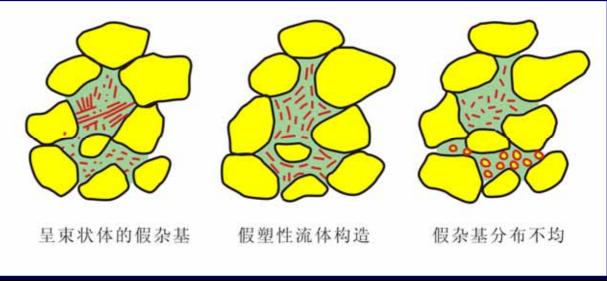

## 正杂基—原杂基经成岩作用明显重结晶的产物,粘土矿物 显微鳞片结构。






# 似杂基—碎屑岩中一些与杂基结构极为相似的细粒组分,在成因上与杂基完全不同。包括下面三种:


(a) <mark>淀杂基</mark>—在成岩作用过程中,由孔隙水中析出的粘土矿物胶结物。






(b)外杂基—碎屑沉积物堆积后,在成岩后生期充填于其粒间孔隙中的外来杂基物质,常具示顶底构造。

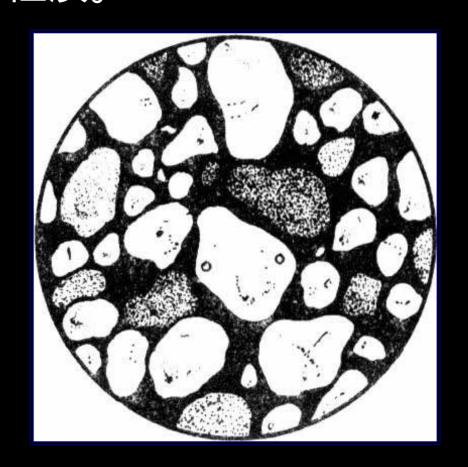
(c) 假杂基—软碎屑经压实破碎形成的类似杂基的填隙物





压扁和压碎的假杂基

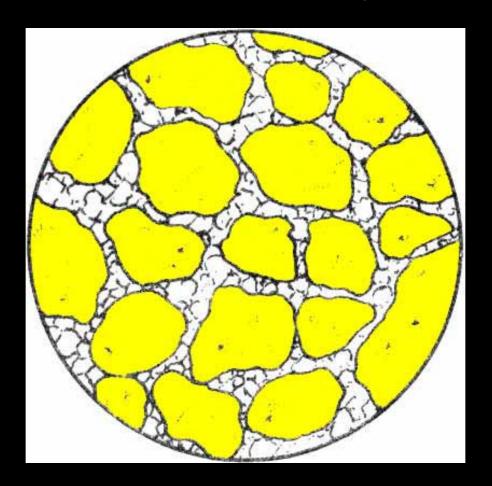
#### (二) 胶结物 (Cement)


胶结物是碎屑岩中以化学沉淀方式形成于 粒间孔隙中的自生矿物。

在碎屑岩中,其含量<50%,表现为孔隙充填结构。

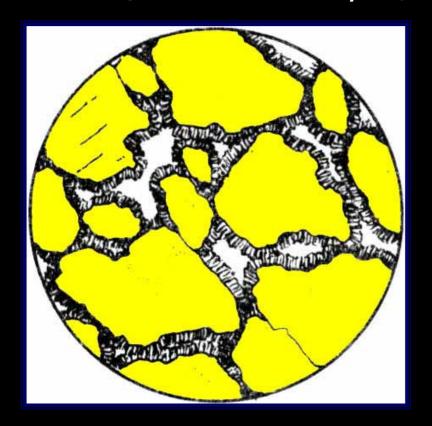


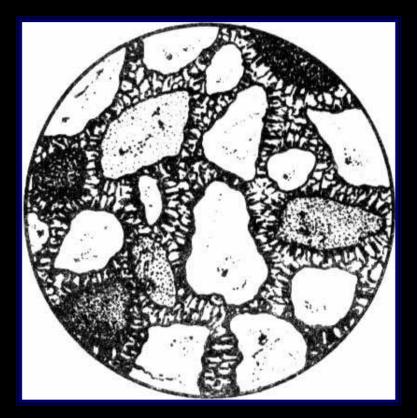
#### (1) 非晶质及隐晶质结构


蛋白石、磷酸盐矿物,在偏光显微镜下表现为均质体性质。



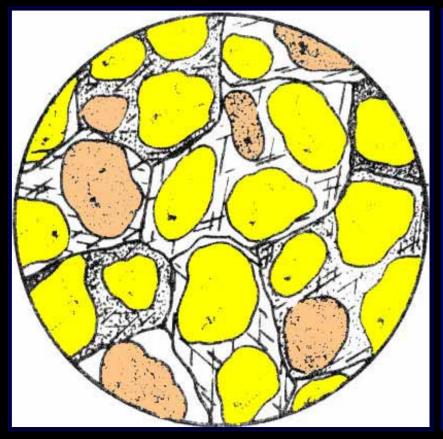


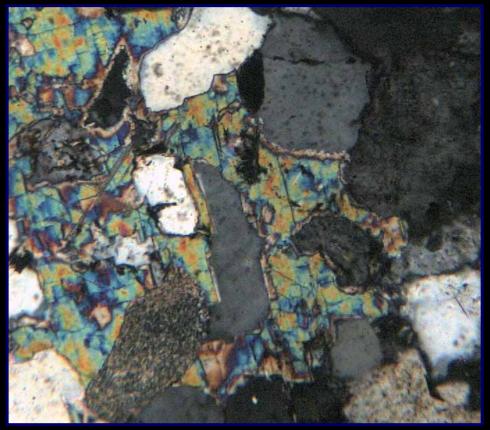

#### (2) 显晶粒状结构


胶结物呈结晶粒状分布碎屑颗粒之间。因晶粒较大,在手标上可以辩认。



#### (3) 带状和栉壳状结构


胶结物环绕颗粒呈带状分布为带状结构, 常为粘土胶结物。如果胶结物呈纤维状或针状 垂直颗粒表面生长,称为栉壳状结构。





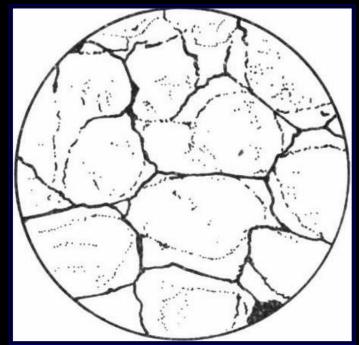

#### (4) 嵌晶结构

胶结物结晶颗粒较粗大,晶粒间呈镶嵌结构,每一个晶粒中可以包含有多个碎屑颗粒。

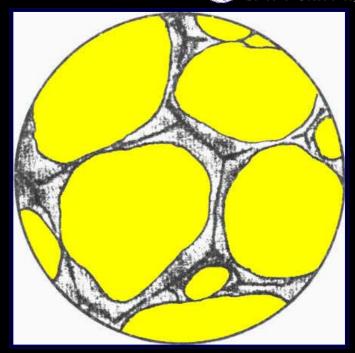







#### (4) 自生加大结构

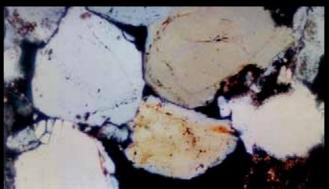
多见于硅质胶结的石英砂岩中,硅质胶结物围绕碎屑石英颗粒生长,二者成分相同,而且表现为完全一致的光性方位。


良好的自生加大胶结物形成于成岩阶段或后生阶段。

School of Geoscience, Yangtze University






海绿石石英砂岩



沉积石英岩



石英具次生加大 细-中粒石英砂岩 硅质胶结,呈自形晶粒状加 大,加大后残余粒间孔。红色铸体,单偏光,×95。 侏罗系延安组,长庆油田元16井1361.6m。



石英加大 中石英砂岩 硅质胶结,呈二次石英次 生加大及加大残余粒间孔。正交偏光,×95。 侏罗系延安组,长庆油田岭3并2121.1m。



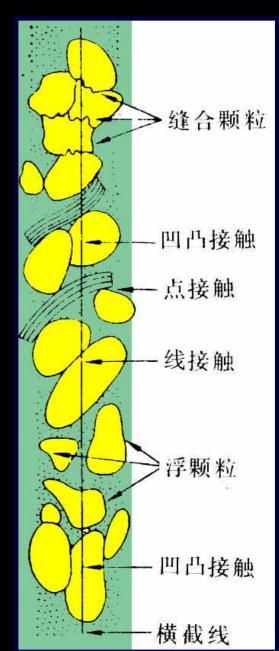
长石加大 中-粗粒石英砂岩 长石呈齿 状加大。正交偏光,×63。 侏罗系延安组,长庆油田岭 130井1445.3m。



#### 三、胶结类型及颗粒支撑类型

(Types of cementation and grain-supported characteristics)

(一)概述


1. 胶结类型——在碎屑岩中,填隙物的分布状况及其与碎屑颗粒的接触关系

胶结类型 胶结物的类型

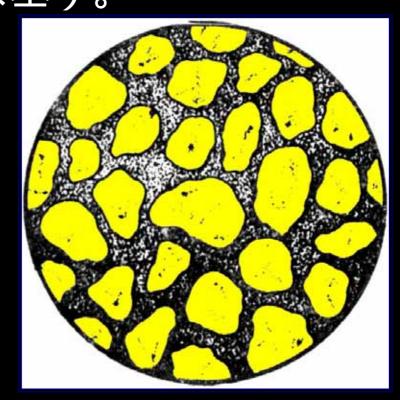
## 2. 决定碎屑岩胶结类型的因素:

(1)碎屑颗粒与填隙物的相对数量

(2) 碎屑颗粒之间的 接触关系



#### (二)胶结类型的分类


1. 基底胶结——填隙物(杂基)含量较多,碎屑颗粒在杂基中互不接触呈漂浮状,填隙物主要为原杂基(或正杂基)。

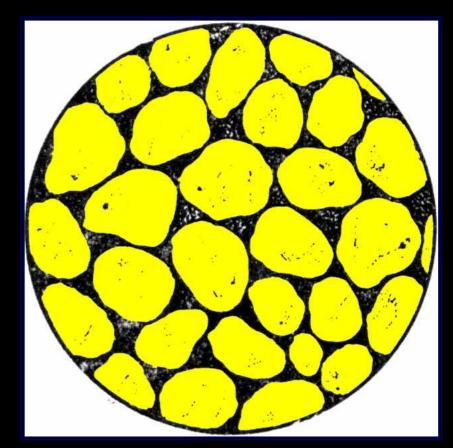
不同于胶结物呈嵌晶结构的胶结方式。

代表高密度流快速堆积的特征。

又称杂基支撑结构。

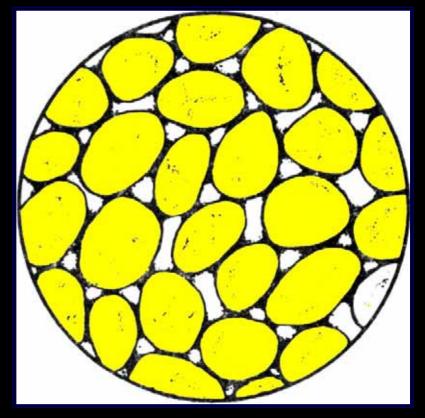
形成于沉积同生期。



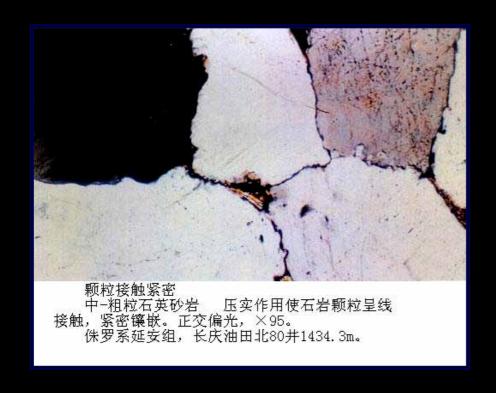


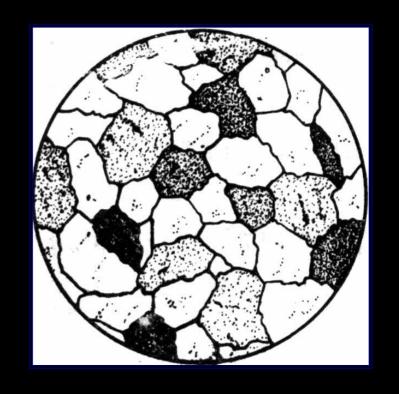

杂基支撑的砾岩

2. 孔隙胶结——最常见的颗粒支撑结构,碎屑颗粒构成支架状,颗粒之间多呈点状接触,胶结物充填在碎屑颗粒之间的孔隙中。


胶结物形成于成岩期或后生期化学沉淀的产物。

反映稳定强水流的 沉积特征。





3. 接触胶结——亦为一种颗粒支撑结构, 颗粒之间呈点接触或线接触,胶结物含量少, 分布于碎屑颗粒相互接触的地方,孔隙中无胶 结物。

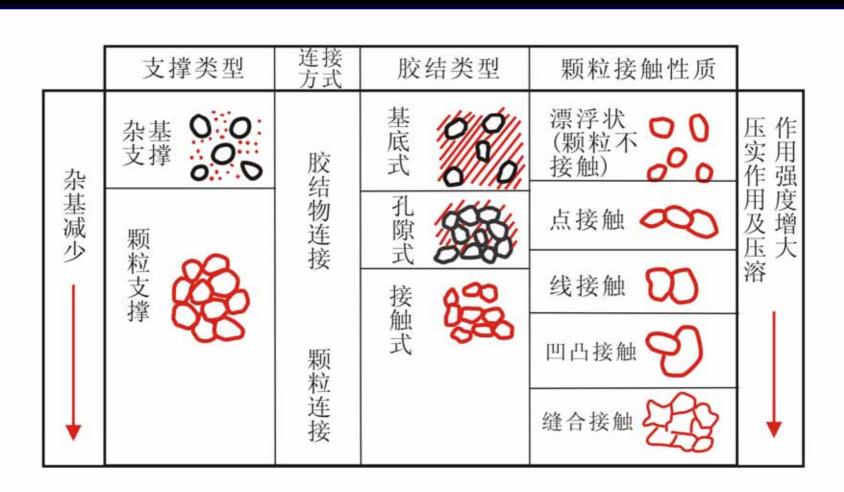
可能是干旱气候条件 下的砂层,因毛细管作 用,溶液沿颗粒间细缝流 动并沉淀而成;或者由原 来的孔隙式胶结物经地下 水淋滤溶蚀改造而成。



4. 镶嵌胶结—在成岩期的压固作用下,特别是当压溶作用明显时,砂质沉积物中的碎屑颗粒会更紧密地接触,颗粒之间由点接触发展为线接触、凹凸接触,甚至形成缝合线接触。



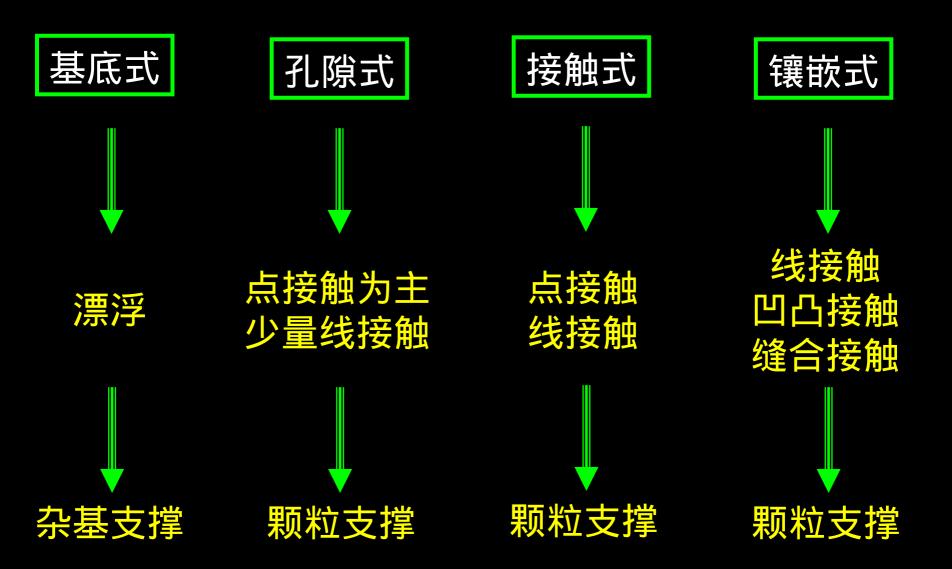





#### (三)碎屑颗粒支撑类型

## 碎屑结构的支撑类型可划分为两类:杂基支撑结构和颗粒支撑结构。

|          | 杂基支撑结构:杂基含量高,颗粒在杂基中呈漂 |       |          |             |
|----------|-----------------------|-------|----------|-------------|
|          | 浮状                    |       |          | 固<br>压<br>溶 |
| 碎屑结构支撑类型 |                       | 点接触   |          | 溶<br>作      |
|          | 颗粒支撑结构:颗粒之间有不同程       | 线接触   |          | 用           |
|          | 度的接触                  | 凹凸接触  |          | 加<br>强      |
|          |                       | 缝合线接触 | <b>↓</b> | •           |


#### (四)支撑类型、胶结类型和颗粒接触关系



支撑类型、胶结类型和颗粒接触关系(据曾允孚等,1986)



#### 胶结类型、接触方式与支撑类型





## 四种胶结类型在颗粒接触关系、颗粒间连接方式、颗粒支撑性质、填隙物数量及压实压溶强度等方面的差异:

| 胶结类型    | 基底式胶结     | 孔隙式胶结     | 接触式胶结 | 镶嵌式胶结       |
|---------|-----------|-----------|-------|-------------|
| 颗粒接触关系  | 颗粒彼此分开,呈漂 | 点接触       | 点接触   | 线接触、凹凸接触、缝合 |
|         | 浮状        |           |       | 线状接触        |
| 颗粒间连接方式 | 杂基连接      | 杂基或胶结物连接, | 胶结物连接 | 颗粒连接        |
|         |           | 或二者兼有     |       |             |
| 颗粒支撑性质  | 杂基支撑      |           | 颗粒支撑  |             |
| 填隙物数量   | 多 —       | <b>—</b>  | 少     | ——→ 无       |
| 压实压溶强度  | 弱 —       |           |       | ———▶ 强      |
|         |           |           |       |             |



# 颗粒支撑和杂基支撑在流体性质、搬运方式、沉积特点、水动力条件、沉积环境、颗粒接触关系、粒间填隙物特征、油气储集性能等方面的差异:

|        | 颗粒支撑                | 杂基支撑              |  |  |
|--------|---------------------|-------------------|--|--|
| 流体性质   | 牵引流、牛顿流体            | 沉积物重力流(密度流)、非牛顿流体 |  |  |
| 搬运方式   | 碎屑物质呈滚动、跳跃、悬浮等方式搬运  | 块体般运~自悬浮的流体般运     |  |  |
| 沉积特点   | 碎屑颗粒可以沉积,而悬浮物质难以沉积, | 碎屑颗粒与杂基可同时沉积,二者基本 |  |  |
|        | 二者沉积分异明显            | 上无分异              |  |  |
| 水动力条件  | 具有一定强度而稳定的水流        | 流速骤然降低            |  |  |
| 沉积环境   | 多形成于浪基面之上的浅水沉积区、河流  | 多形成于浪基面之下的斜坡带及盆地  |  |  |
|        |                     | 边缘沉积区、泥石流         |  |  |
| 颗粒接触关系 | 颗粒间呈点、线、凹凸及缝合线状接触   | 颗粒被杂基彼此分开而呈漂浮状    |  |  |
| 粒间填隙物  | 胶结物或杂基,少            | 杂基,多              |  |  |
| 储集性能   | 多数较好~好              | 多数差~较差            |  |  |



#### 四、碎屑岩的孔隙结构

Pore textures of clastic rocks

孔隙是碎屑岩(特别是砂岩)的重要结构组成部分之一,其间可以充填大量的气体或液体。

#### 孔隙可以分为原生孔隙和次生孔隙两类:

原生孔隙主要是粒间孔隙,即碎屑颗粒原始格架间的孔隙。原生的孔隙度和渗透率与碎屑颗粒的粒度、分选性、球度、圆度和填集性有关。

次生孔隙绝大多数都是形成于成岩中期之后及后生期,一般都是岩石组分发生溶解作用的结果,也可以是由于岩石的破碎和收缩产生的次生孔隙。

School of Geoscience, Yangtze University





1.部分溶解



2.受溶蚀颗粒 及过量孔隙



3.溶蚀残骸



4. 铸模孔隙



5.贴粒孔隙



6.残余胶结物



7.伸长型孔隙



8. 不均匀性填



9.超粒大孔隙



10.油浸 碳酸盐基质



11.破碎颗粒



12.岩石裂缝



长石



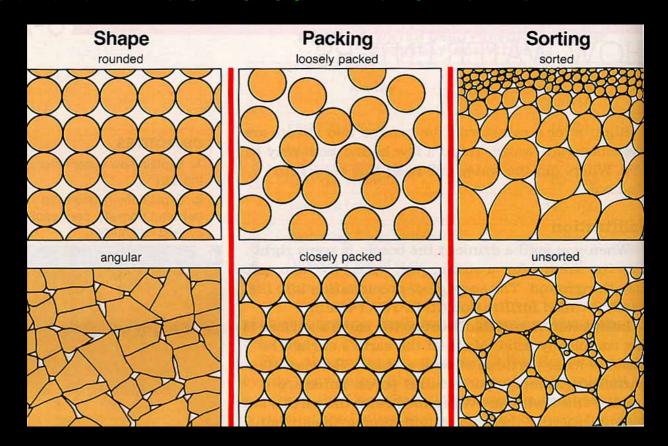
砂屑 碳酸盐

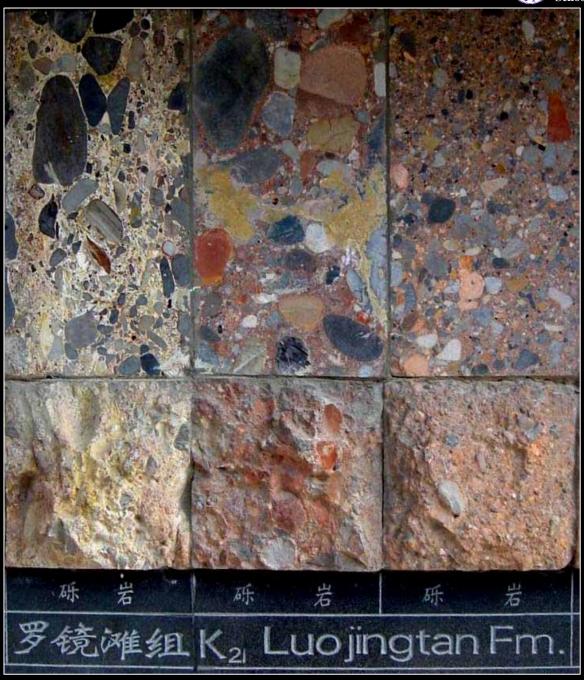


碳酸盐

孔隙

胶结物 基质





五、结构成熟度 (textural maturity)

结构成熟度——指碎屑物质结构上被改造

趋向于最终产物的程度。

等大 分选好 圆状 球形 无杂基





#### 六、粒度分析 (Grain size analysis)

#### (一)粒度分析方法的选择

Selection of grain size analysis methods

粒度分析方法的选择因碎屑颗粒大小和岩石致密程度而异。

对于砾石可以直接测量其线性值,也可以量筒测其体积。

砂或疏松的砂岩多采用筛析法。

粉砂和粘土又可用沉速法分析。

对于碎屑粒度进行系统分析时,一般以筛析法为主,辅之以沉速法和直接测量法,从而求得碎屑岩的全部粒度组分。

数量很少或在悬浮液中浓度太低的粉砂、 粘土样品,可以采用光学法和电法。

固结紧密无法松解的岩石,则只能采用薄片粒算法。

#### 1. 筛析

筛析时是将已处理好的碎屑颗粒通过孔径 大小不同而且按顺序排列的一套套筛,使直径 大小不同的颗粒分别集中,从而得到被分析样 品各粒级组分的含量数据。

为保证筛析的精度,要求套筛有较好的质量,筛孔要均匀而且大小标准。筛孔间距最好是1/4 或1/2 。



#### 青岛某海滩样品粒度分析记录

| 筛析记录表                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                                 |                                                                                               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| 颗 粒 直 径                                                                                                                                                                   |                                                                                                                                                                                              | 重量                                                                                           | 重量百分比                                                                                                                                                                                                                                                                                                                           | 累积重量百分比                                                                                       |  |
| mm                                                                                                                                                                        | <i>φ</i> 值                                                                                                                                                                                   | (g)                                                                                          | (%)                                                                                                                                                                                                                                                                                                                             | (%)                                                                                           |  |
| >1 $1 \sim 0.75$ $0.75 \sim 0.60$ $0.60 \sim 0.50$ $0.50 \sim 0.43$ $0.43 \sim 0.40$ $0.40 \sim 0.30$ $0.30 \sim 0.25$ $0.25 \sim 0.20$ $0.20 \sim 0.15$ $0.15 \sim 0.12$ | >0<br>$0 \sim 0.4$<br>$0.4 \sim 0.72$<br>$0.72 \sim 1.0$<br>$1.0 \sim 1.2$<br>$1.2 \sim 1.3$<br>$1.3 \sim 1.75$<br>$1.75 \sim 2.0$<br>$2.0 \sim 2.32$<br>$2.32 \sim 2.72$<br>$2.72 \sim 3.0$ | 2.12<br>7.72<br>61.18<br>49.18<br>35.52<br>40.72<br>83.02<br>13.75<br>79.18<br>23.73<br>2.10 | $ \begin{array}{c} 0.53 \\ 1.93 \\ 15.29 \\ 12.29 \end{array} \\ \begin{array}{c} 29.51 \\ 12.29 \end{array} \\ \begin{array}{c} 8.88 \\ 10.18 \\ 20.75 \\ 3.44 \end{array} \\ \begin{array}{c} 43.25 \\ 3.44 \end{array} \\ \begin{array}{c} 19.79 \\ 5.93 \\ 0.52 \end{array} \\ \begin{array}{c} 26.24 \\ 0.52 \end{array} $ | 0.53<br>2.46<br>17.75<br>30.04<br>38.92<br>49.10<br>69.85<br>73.29<br>93.08<br>99.01<br>99.53 |  |
| $0.15 \sim 0.12$<br>$0.12 \sim 0.10$<br>$0.10 \sim 0.09$<br>$0.09 \sim 0.075$<br>$0.075 \sim 0.06$<br>< 0.06                                                              | $2.72 \sim 3.0$ $3.0 \sim 3.3$ $3.3 \sim 3.5$ $3.5 \sim 3.75$ $3.75 \sim 4.0$ $> 4$                                                                                                          | 0.58<br>0.24<br>0.30<br>0.80<br>0.82                                                         | $ \begin{vmatrix} 0.32 \\ 0.15 \\ 0.06 \\ 0.08 \\ 0.07 \end{vmatrix} 0.36 $ 0.21                                                                                                                                                                                                                                                | 99.53<br>99.68<br>99.74<br>99.82<br>99.89<br>100.10                                           |  |

#### 筛析法的优点是:

- □设备简单,易于操作,适于做大量分析;
- 2 筛析结果为进一步的矿物学和颗粒粒度、形状研究准备了丰富的材料。

#### 筛析法的<mark>缺点</mark>是:

- 口只对松散的或弱胶结的岩石适用
- ②软的或过脆的颗粒可能在筛析过程中因破碎 而变细

#### 2. 沉降分析

常用的方法有移液管法和沉降管法

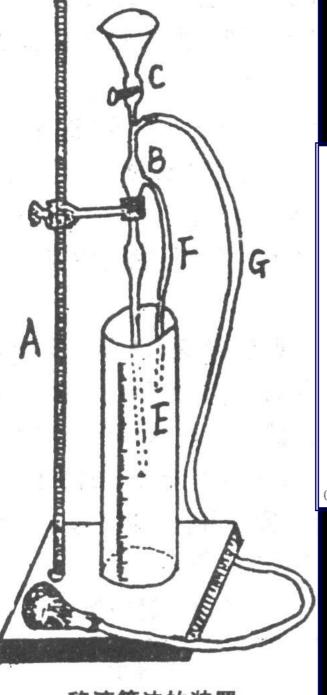
#### (1)移液管法

以斯托克沉降定律作为分析根据

$$\mathbf{V} = \frac{2}{9} \, \frac{d1 - d2}{\mu} \, \mathbf{gr}^2$$

斯托克公式表明,当流体性质和颗粒密度已知时,沉降速度直接由颗粒大小决定,并与颗粒直径的平方成正比。

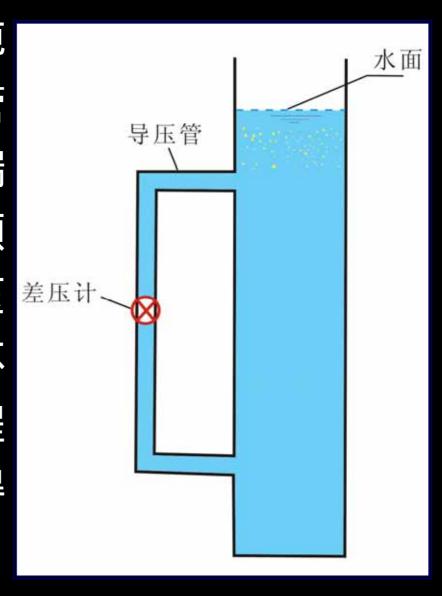



#### L大学地球科学学院

School of Geoscience, Yangtze University



| 颗粒大小                                    |        | 下沉速度 | 所需时间(s)     |           |           |
|-----------------------------------------|--------|------|-------------|-----------|-----------|
| 级别                                      | 毫米     | φ值   | mm/s        | 下沉5厘米     | 下沉 10 厘米  |
| 粗粉砂<br>中粉砂<br>细粉砂<br>极细粉砂<br>粗粘土<br>中粘土 | 0.0625 | 4    | 3.84        | 13"       | 26"       |
|                                         | 0.0312 | 5    | 0.96        | 53"       | 1'46"     |
|                                         | 0.0156 | 6    | 0.24        | 3'28"     | 6'56"     |
|                                         | 0.0078 | 7    | 0.06        | 13'53"    | 27'46"    |
|                                         | 0.0039 | 8    | 0.015       | 55'33"    | 1h51'6"   |
|                                         |        |      | 0.00375     | 3h42'13"  | 7h24'26"  |
|                                         |        |      | 0.0009375   | 14h48'53" | 29h37'46" |
|                                         |        |      | < 0.0009375 |           |           |


注:此表是根据斯托克沉降公式,条件是球形颗粒,比重为 2.65,温度 20℃,水的比重为 1,水的粘度为 0.01 厘泊,颗粒在静水中不互相碰撞的条件下下沉(要求悬浮液速度不能太大)。



移液管法的装置

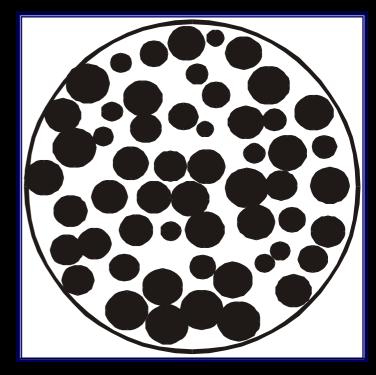
#### (2) 沉降管法

在沉降管内放好纯 水,然后将分析样品从管 的上端导人,使之向下端 沉降。这时可直接观察颗 粒堆积速度,或借用差压 计或压力计对沉积物中不 同粒度的沉降速度和过程 进行测量和记录,从而得 到样品的粒度分布资料。



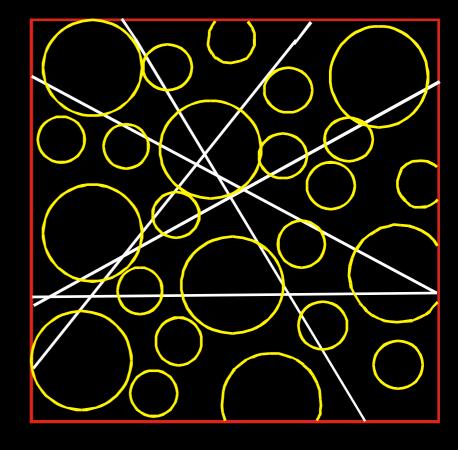
#### 3. 薄片粒度分析

对于固结紧密难于松懈、甚至无法松懈的砂岩或粉砂岩都不能采用筛析和沉降分析,只能利用薄片进行粒度分析。


有时由于样品数量过少,难于作筛析,也 只好用薄片观察粒度。

薄片粒度分析测得的是一定粒度的颗粒数百分比,而不是各粒级组分的重量百分比,因 此它是属于粒算法。




### 必须注意到,岩石的切面绝不可能刚好都通过碎屑颗粒的中心。

由等大球形颗粒堆积体的任意切面中可以看出,颗粒的粒度多小于其实际的粒度,只有少数颗粒表现了其真正的大小。



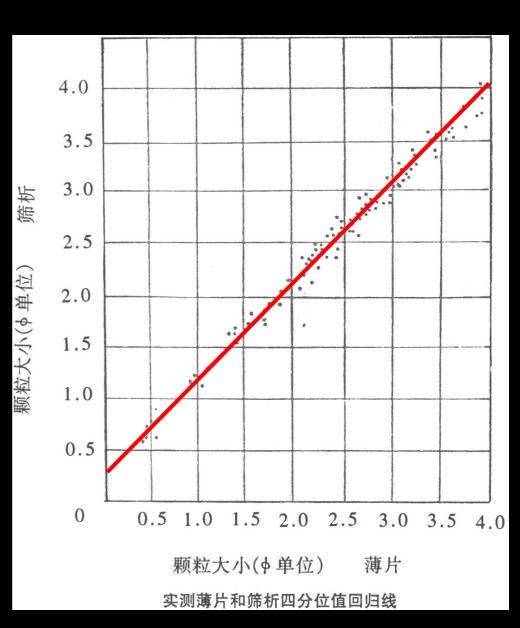
由任意切面实测资料计算得出的平均直径,只是真正球体直径的76.3%。

从不等大颗粒堆积 体的任意切面上看,切 面穿过颗粒的概率与颗 粒的大小成正比,大颗 粒显然比小颗粒有更多 的被切穿的机会。



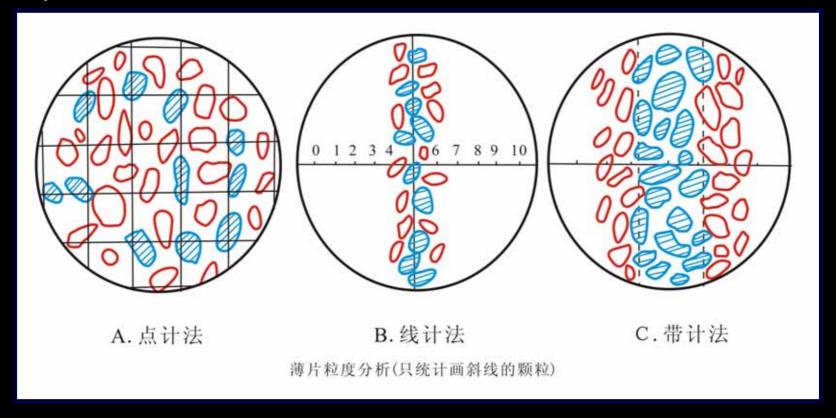
实际情况要更加复杂,因为沉积碎屑不但 包含着不同大小的颗粒,而且颗粒形状极不规则,又多种多样。 因此,对薄片中

得到的粒度数据要进


行校正,校正方法可

以从颗粒分布的矩值

与切面粒度分布矩值


之间的数学关系中得







在薄片粒度分析中,常用的抽样方法有三种,即点计法、线计法和带计法。



所得结果,经过校正和换算,便可求出各 粒级颗粒的重量百分比。



除了以上的粒度分析方法以外,当前生产

中还使用有显微镜上用的自动或半自动粒度分

析仪、光电微粒分析仪等。



#### (二)粒度资料图解 (Diagram of grain size data)

粒度分析的结果,是得到碎屑样品的粒度 组分数据。

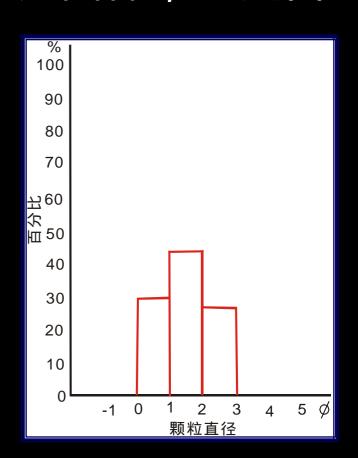
| 筛析记录表                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                               |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                          |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| 颗 粒 直 径                                                                                                                                                                                                                       |                                                                                                                                                                                                              | 重量                                                                            | 重量百分比                                                                                                                                                                                                                                                                                                                             | 累积重量百分比                                                                                                                  |  |
| mm                                                                                                                                                                                                                            | <i>φ</i> 值                                                                                                                                                                                                   | (g)                                                                           | (%)                                                                                                                                                                                                                                                                                                                               | (%)                                                                                                                      |  |
| >1 $1 \sim 0.75$ $0.75 \sim 0.60$ $0.60 \sim 0.50$ $0.50 \sim 0.43$ $0.43 \sim 0.40$ $0.40 \sim 0.30$ $0.30 \sim 0.25$ $0.25 \sim 0.20$ $0.20 \sim 0.15$ $0.15 \sim 0.12$ $0.12 \sim 0.10$ $0.10 \sim 0.09$ $0.09 \sim 0.075$ | >0 $0 \sim 0.4$ $0.4 \sim 0.72$ $0.72 \sim 1.0$ $1.0 \sim 1.2$ $1.2 \sim 1.3$ $1.3 \sim 1.75$ $1.75 \sim 2.0$ $2.0 \sim 2.32$ $2.32 \sim 2.72$ $2.72 \sim 3.0$ $3.0 \sim 3.3$ $3.3 \sim 3.5$ $3.5 \sim 3.75$ | 2.12 7.72 61.18 49.18 35.52 40.72 83.02 13.75 79.18 23.73 2.10 0.58 0.24 0.30 | $ \begin{array}{c} 0.53 \\ 1.93 \\ 15.29 \\ 12.29 \end{array} $ $ \begin{array}{c} 8.88 \\ 10.18 \\ 20.75 \\ 3.44 \end{array} $ $ \begin{array}{c} 43.25 \\ 3.44 \end{array} $ $ \begin{array}{c} 19.79 \\ 5.93 \\ 0.52 \end{array} $ $ \begin{array}{c} 0.15 \\ 0.06 \\ 0.08 \end{array} $ $ \begin{array}{c} 0.36 \end{array} $ | 0.53<br>2.46<br>17.75<br>30.04<br>38.92<br>49.10<br>69.85<br>73.29<br>93.08<br>99.01<br>99.53<br>99.68<br>99.74<br>99.82 |  |
| 0.075~0.06<br><0.06                                                                                                                                                                                                           | 3.75~4.0<br>>4                                                                                                                                                                                               | 0.80<br>0.82                                                                  | 0.07 <sup>J</sup> 0.21                                                                                                                                                                                                                                                                                                            | 99.89<br>100.10                                                                                                          |  |



这些数据是非常重要的第一性资料,但是 直接用数据不便于应用和对比。

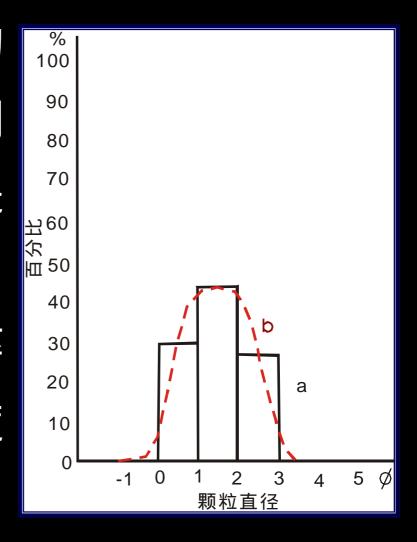
<u>因此,常</u>需要将数据形象化,绘制成图。

常用的粒度图——直方图、频率曲线、累积曲线和概率值累积曲线。


#### 1. 直方图和频率曲线

Histogram and frequency distribution curve

直方图是最常用的粒度组分图件,它是由


一系列相邻的长方块构成的。

各长方形的底边等长, 其长度代表粒度区间, 长方形的高代表每种粒度的 频数,即表示各粒度区间的 重量百分比。



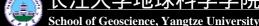
将直方图上各方块的顶边中点连接起来,绘制成一条圆滑曲线,这就是频率曲线图。

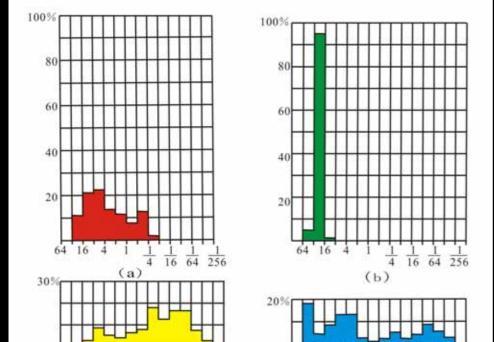
与直方图类似,频率 曲线也表示了样品的粒度 分布。



频率曲线图形简单、直观,应用更广。




通常把直方图中突出于周围方块之上的高方块或频率曲线中的高点称作峰(亦称众数)。

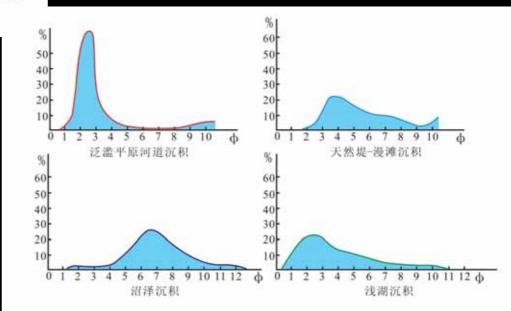

如果样品中只有一个峰,叫作单峰;若有两个或两个以上的峰则称为双峰或多峰。

海岸卵石层的粒度范围最窄,具有很突出的单峰,这是沉积物粒度分选极好的特征;

河流冲积沉积物的粒度分布较宽,具双峰,峰所在粒级的重量百分比并不高,这是分选性不好的表现;

冰川沉积和雨水冲刷斜坡上的堆积物则粒度分布范围更广,其中砾石与泥、砂混杂,说明分选性更差。



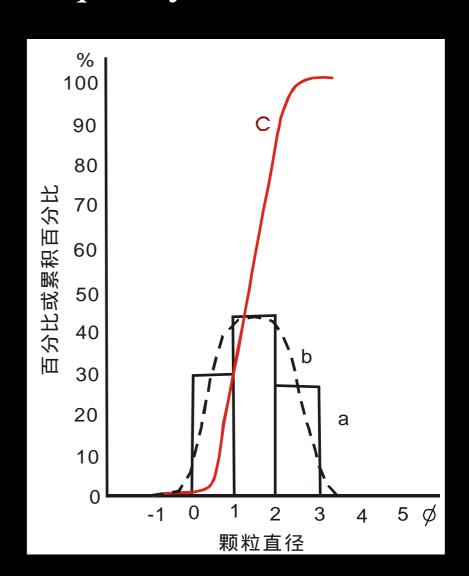



### 不同成因碎屑沉积物的粒 度组分直方图

- (a)河流冲积砂质卵石砾石
- (b)海岸细卵石层
- (c)含碎屑的冰川砂
- (d)雨水冲刷斜坡上堆积物



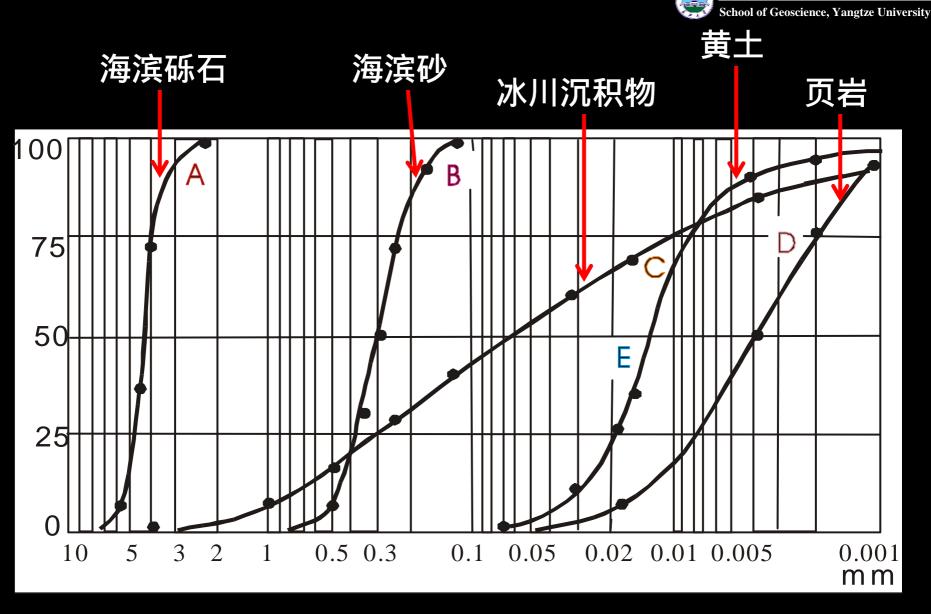
(c)



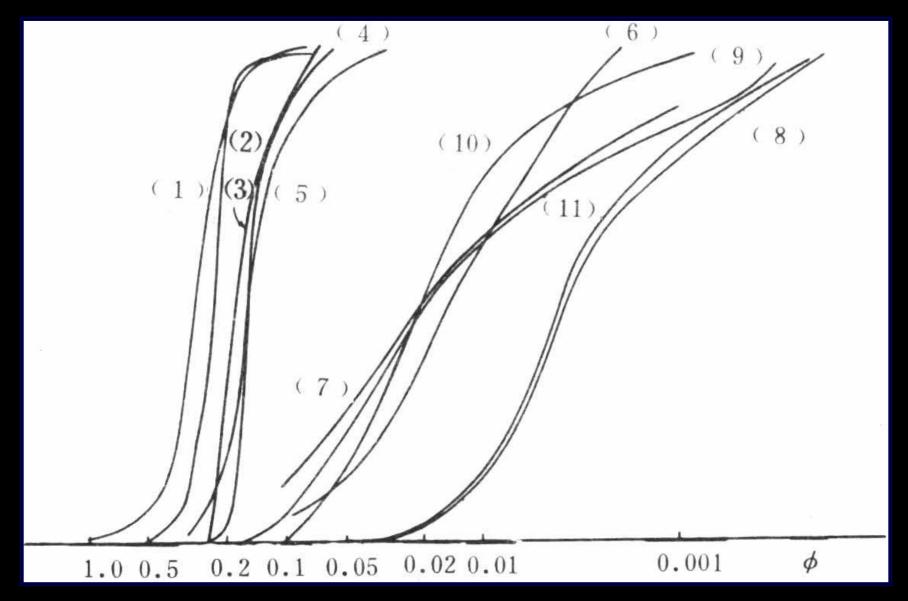



### 2. 累积曲线 (Cumulative frequency curve )

用粒度分析成果中的累积重量百分比数作成的图。


横坐标仍然表示粒径,而纵坐标表示的是各粒级的累积含量。




累积曲线总是构成"S"形。但不同沉积环境形成的碎屑沉积物,其累积曲线形态是有差别的。

滨海沉积和风成沉积的碎屑物质分选好, 粒度范围窄,因而累积曲线很陡;

洪流及冰川沉积分选差,粒度分布范围宽,累积曲线表现得平缓。



不同成因碎屑沉积的累积曲线



长江中下游现代沉积的粒度累积曲线图

### 3. 概率值累积曲线

Cumulative frequency curve plotted with a log probability scale


仍然用累积重量百分

比作图。横坐标仍为粒径

( )值,纵坐标改用概

率百分数标度,这样做成

的便是概率值累积曲线图



如果粒度分布符合通常所说的对数正态分布,那么用概率坐标在图上会得到一条直线。

但一般碎屑沉积物的概率累积曲线总是表现为相交的几个直线段,这反映了在沉积物中包含着几个正态次总体。

与"S"形累积曲线相比,概率值累积曲线是将碎屑组分中含量较少的粗、细尾部的特点放大了,这对于沉积成因分析及在图解法中应用都显得更加方便。

(三)粒度参数 (Grain size statistical parameters)

计算粒度参数常与图解相结合

首先由累积曲线上读得某些累积百分比处

的颗粒直径

然后用数学公式进行计算

粒度参数的种类很多,过去主要用粒度中值(Md)和分选系数(So)。

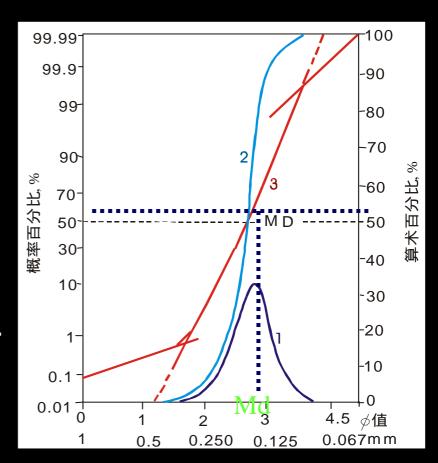
当前广泛应用的有平均粒径(Mz)、标准偏差( $_1$ )、偏度( $SK_1$ )和峰度( $K_G$ )等。

过去用特拉斯克(Trask)公式计算,当前应用更广的是福克和沃德(Folk and Ward)的公式。

1. 平均粒径和中值 (Mean grain size and median)

表示粒度分布的集中趋势。

碎屑物质的粒度分布一般是趋向于围绕着一个平均的数值,即中值、众数或平均粒径。

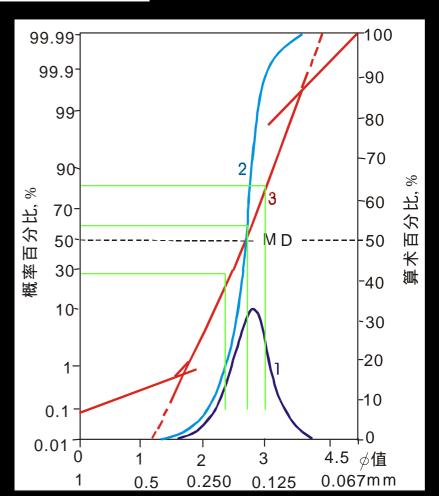

这些数值受两个因素的控制:

- 一是沉积介质的平均动力能(速度)
- 二是来源物质的原始大小

中值Md是累积曲线上50%处对应的粒径,特拉斯克以mm作粒径单位,福克等是用值表示粒径。

中值的意义是指它在 粒度上居于沉积物的中 央,有一半重量的颗粒大 于它,另有一半小于它。

中值很容易求得,但它不能表示粗、细两侧的粒度变化,代表性较差。




### 按福克和沃德的定义,平均粒径为:

$$\mathbf{M} z = \frac{\phi_{16} + \phi_{50} + \phi_{84}}{3}$$

平均粒径比中值能更 正确地反映碎屑颗粒的集中趋势。

这一参数指标常被用 来作沉积韵律剖面图或平 面等值线图,用以表示沉 积物质在纵向或横向上的 粒度变化规律。



### 2. 标准偏差和分选系数

Standard deviation and sorting coefficient

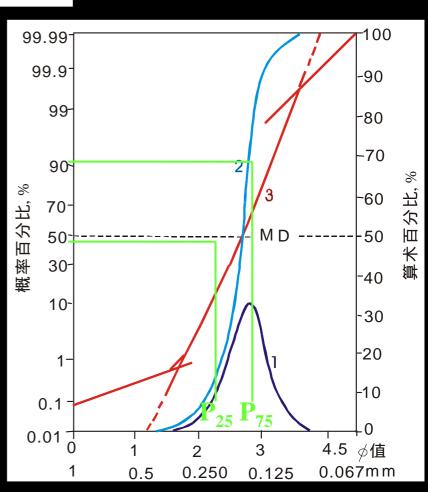
表示分选程度的参数。

它表示颗粒大小的均匀程度,或者说是表

现围绕集中趋势的离差。



### 分选系数说明分选性,<mark>分选系数为:</mark>


$$So = \frac{P_{25}}{P_{75}}$$

 $P_{25}$ 和 $P_{75}$ 分别代表累积曲线上25%和75%处所对应的颗粒直径(mm)。

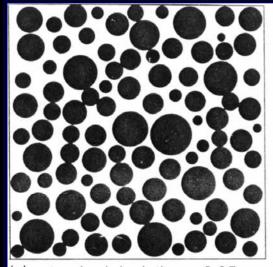
分选好:So=1~2.5

分选中等:So=2.5~4.0

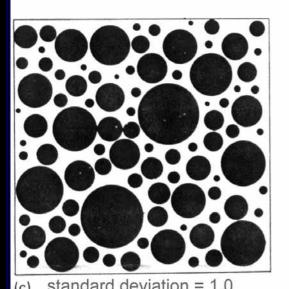
分选差:So>4.0



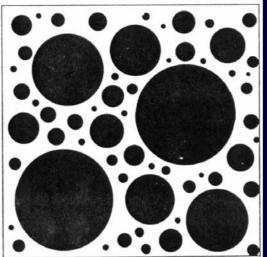
分选系数应用很广,但上述公式存在着缺欠,因它没能包括粗、细尾端的分选特点。


由福克和沃德提出的标准偏差公式为:

$$\grave{O}_{1} = \frac{\phi_{84} - \phi_{16}}{4} + \frac{\phi_{95} - \phi_{5}}{6.6}$$


式中除包含了粒级分布的中央部分(16%至84%)外,也包括了对水动力条件反映最灵敏的粗细尾部(95%和5%)的分选情况。因此,该式被认为是更全面和更富有成因意义。




# 前人曾分析了大量样品,从而确定了用标准偏差(1)确定分选级别的标准。



(a) standard deviation = 0.35



standard deviation = 0.5



(d) standard deviation = 2.0

分选极好:<0.35

分选好:0.35~0.50

分选较好:0.50~0.71

分选中等: 0.71~1.00

分选较差:1.00~2.00

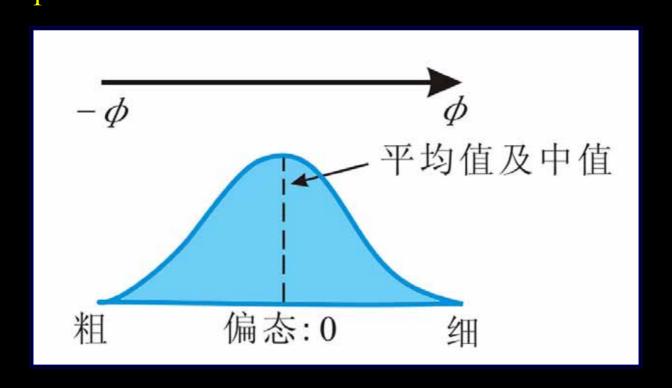
分选差:2.00~4.00

分选极差:>4.00



分选性的好坏也可以作环境标志。碎屑物质的分选程度与沉积环境的水动力条件和自然 地理条件有着密切的关系。

总的看来,风成沙丘砂的分选最好,海(湖)滩砂次之,河砂更差,分选最坏的是冲积扇和冰川沉积。

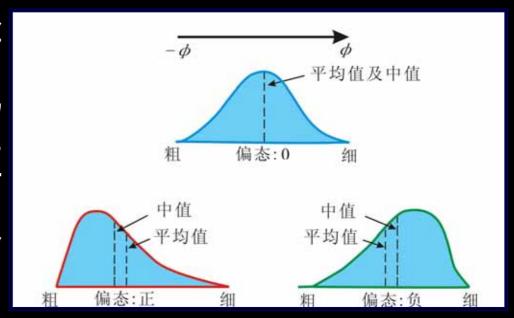

### 3. 偏度 (Skewness)

偏度SK1被用来判别粒度分布的不对称程

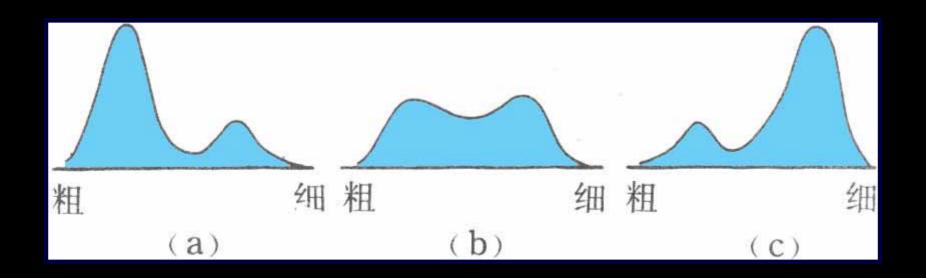
度。福克和沃德的偏度公式为:

$$SK_{1} = \frac{\phi_{16} + \phi_{84} - 2\phi_{50}}{2(\phi_{84} - \phi_{16})}$$

从频率曲线上看,对数正态分布是左右对称的。同时中值、平均粒径和众数一致,即表现为一个数值。用偏度公式计算,正态粒度分布的SK<sub>1</sub>应等于零。







### 根据峰的偏斜方向可分出:

(1)正偏态:峰偏向粗粒度一侧,说明沉积物以粗组分为主,细粒一侧表现为低的尾部。用偏度公式计算,SK<sub>1</sub>应为正值。

(2)负偏态:峰偏向细粒度一侧,沉阳如物以细粒主,粗粒一侧有低的尾部。这时SK<sub>1</sub>应为负值。



不对称的频率曲线可以是单峰曲线,但也常见双峰曲线,表现为在含量较少的尾部有一个低的次峰。



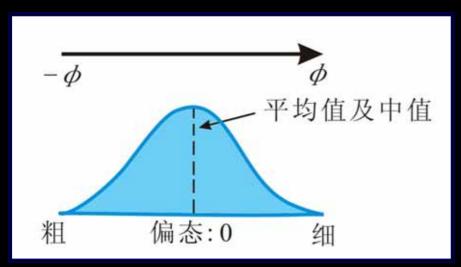
福克(1966)按偏度值SK、将偏度分为五级:

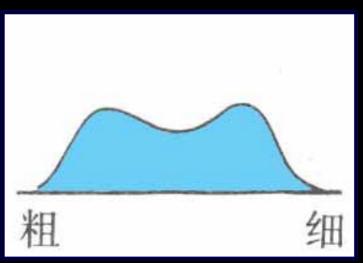
很负偏态:-1~-0.3

负偏态:-0.3~-0.1

近于对称:-0.1~+0.1

正偏态:+0.1 ~ +0.3


很正偏态:+0.3~+1


一般说来,河砂表现为正偏度,海滩砂表现为负偏度,风成沙丘砂为正偏度。

### 偏度值趋于零有两种完全不同的含义:

一种是指单峰正态曲线,分选最好。一般 见于海滩沉积。

另一种是表示马鞍形双峰曲线,两种粒度 总体等量混合,分选最差。多属河流沉积





### 4. 峰度(尖度)(Kurtosis)

峰度是用来衡量粒度频率曲线尖锐程度的。也就是度量粒度分布的中部与两尾端的展形之比。

福克和沃德提出的峰度公式为:

$$\mathbf{K}_{G} = \frac{\phi_{95} - \phi_{5}}{2.44 \left(\phi_{75} - \phi_{25}\right)}$$

在对称正态曲线中,  $_{95}$ 与  $_{5}$ 之间粒度间距是  $_{75}$ 与  $_{25}$ 之间粒度间距的2.44倍, 因此正态 粒度分布的 $K_{G}=1$ 。

根据一百多个样品的分析,福克等用K<sub>G</sub>值确定了峰值的等级界限。

很平坦:<0.67

平坦: 0.67~0.9;

中等(正态):0.90~1.11

尖锐:1.11~1.56

很尖锐:1.56~3.00

非常尖锐:>3.00

### K<sub>G</sub>值的分布不规则,作图时使用不方便。

福克和沃德又建议在作图时将 $K_G$ 值转换为 $K'_G$ ,其转换公式为:

$$K_G' = \frac{K_G}{K_G + 1}$$

 $K_{G}$ '值的变化范围在0.33~0.90,正态曲线的  $K_{G}$ '值等于0.5。

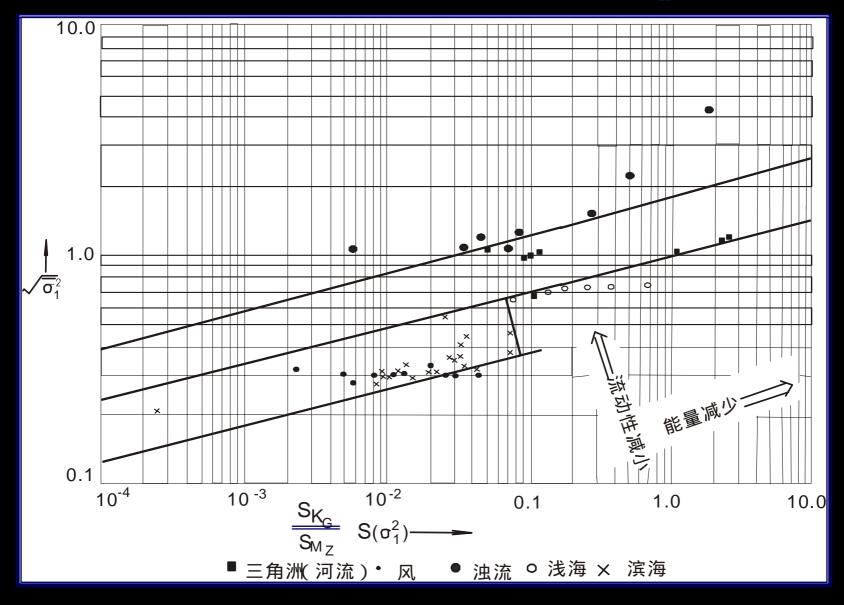
| 几种沉积类型的粒度特点                             |              |                    |       |     |     |  |  |  |  |  |
|-----------------------------------------|--------------|--------------------|-------|-----|-----|--|--|--|--|--|
| 3/2 <b>#</b> (1 <b>3k</b> - <b>1</b> 0) |              | 特                  | 点     |     |     |  |  |  |  |  |
| 沉积类型                                    | 频率曲线形态       | 偏度                 | 峰 度   | 分 选 | 粒 度 |  |  |  |  |  |
| 河 砂                                     | 常见双峰或多峰不对称曲线 | 变化大,正偏为主,<br>也有负偏态 | 数值多低  | 差一中 | - 粗 |  |  |  |  |  |
| 海滩砂                                     | 单峰对称正态曲线为主   | 多对称, 偶有负偏态         | 中等至微尖 | 好   |     |  |  |  |  |  |
| 沙丘砂                                     | 单峰曲线, 微不对称   | 正偏态                | 中 等   | 极 好 | 细   |  |  |  |  |  |
| 风成坪地砂                                   | 双峰曲线、不对称     | 正偏态                | 尖 锐   | 好   |     |  |  |  |  |  |



### (四)粒度分析在区分沉积环境中的应用

Applications of grain size analysis in distinguishing sedimentary environments

沉积岩的粒度是受搬运介质、搬运方式及 沉积环境等因素控制的,反过来这些成因特点 必然会在沉积岩的粒度性质中得到反映,这正 是应用粒度资料确定沉积环境的依据。

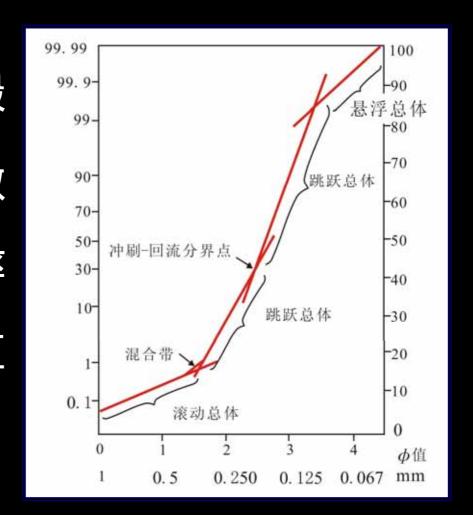

### 1. 粒度判别函数及成因图解

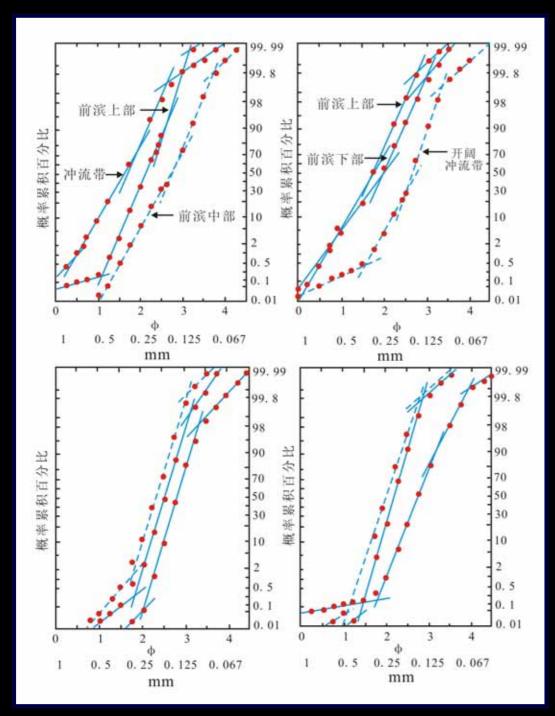
### 萨胡 (Sahu, 1964) 判别分析

| His tid yet til er lår |                                                                                                      |                                  |                                                                                |
|------------------------|------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------|
| 鉴别沉积环境<br>             | 判 别 公 式                                                                                              | 鉴 别 值                            | 函数平均值                                                                          |
| X <sub>风</sub> 风成沙丘与海滩 | 风成:海滩 = $-3.568$ Mz+ $3.7016\sigma_1^2$<br>$-2.0766$ S $K_1$ + $3.1135$ K $_G$                       | 风成 Y < -2.7411<br>海滩 Y > -2.7411 | $\overline{Y}_{\bowtie} = -3.0973$ $\overline{Y}_{\bowtie} = -1.7824$          |
| 海滩与浅海                  | $\mu_{\mu_1; \lambda_{\beta}} = 15.6543 \text{Mz} + 65.7091 \sigma_1^2 + 18.1071 SK_1 + 18.5043 K_G$ | 海滩 Y < 65.3650<br>浅海 Y > 65.3650 | $\overline{Y}_{ipit} = 51:9536$ $\overline{Y}_{ipit} = 104.7536$               |
| 大海与河流(三角洲)             | $_{lpha_{i}$ 河流 == $0.2352$ Mz $-8.7604\sigma_{1}^{2}$ $-4.8932$ S $K_{1}$ + $0.0482$ K $_{G}$       | 浅海 Y>-7.4190<br>河流 Y<-7.4190     | $\overline{Y}_{\text{poly}} = -5.3167$ $\overline{Y}_{\text{poly}} = -10.4418$ |
| 河流(三角洲)与浊流             | 河流:浊流 = $0.7215$ Mz $-0.4030\sigma_1^2$<br>+ $6.7322$ SK <sub>1</sub> + $5.2927$ K <sub>G</sub>      | 河流 Y>9.8433<br>浊流 Y<9.8433       | $\overline{Y}_{injik} = 10.7115$ $\overline{Y}_{injik} = 7.9791$               |

# 兰迪姆(Landim, 1968)等求出的冰碛物与冰水沉积、冰碛物与冲积扇沉积的判别方程:

| ,        | , to the second party.                                                      |                                 |                                                                   |
|----------|-----------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------|
| 鉴别沉积环境   | 判 别 公 式                                                                     | 鉴 别 值                           | 函数平均值                                                             |
| 冰碛物与冲积扇  | $Y_{冰碛物: 冲积扇} = 0.00405Mz + 0.02381\sigma_1$<br>$-0.05616SK_1 + 0.10365K_G$ | 冰碛物 Y>0.12809<br>冲积扇 Y<0.12809  | $\overline{Y}_{$ 冰碳物 $= 0.16121$ $\overline{Y}_{$ 冲积廟 $= 0.10225$ |
| 冰碛物与冰水沉积 | $Y_{冰碛物: 冰水沉积} = -0.00256Mz + 0.03501\sigma_1 + 0.02578SK_1 - 0.01549K_G$   | 冰碛物 Y>0.08133<br>冰水沉积 Y<0.08133 | $\frac{\overline{Y}_{冰 颁物}}{\overline{Y}_{冰 水 沉积}} = 0.11429$     |





萨胡 (Sahu) 图解

### 2. 用概率累积曲线区分沉积环境

维谢尔(Visher, 1965, 1969)首先提出。

沉积物的粒度一般 不是表现为单一的对数 正态分布,因此其概率 图总是由几个相交的直 线段构成。





## 海滩砂的 粒度概率图

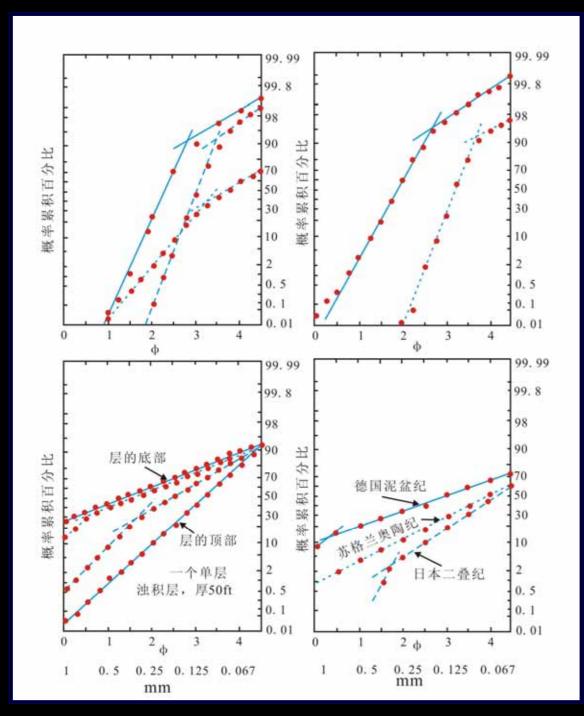
# 海滩沙丘砂的 粒度概率图

#### 99.8 99.8 累积百分比 海滩 概率累积百分比 水深15ft 河口低潮坪 50 海滩水深 30 計 12ft 水深15ft 水深12f 10 0.5 0.5 0.1 0.1 0. 01 0.01 2 2 0.25 0. 125 0. 067 0.25 0.125 0.067mm mm 99, 99 99.8 分流河道 99.8 分流河口砂坝 概率累积百分比 概率累积百分 浅海(波浪带 主河 (强水流 浅海(波浪带 邻近天然堤的浅水 次要 河道 (弱水流) (悬浮) 0.5 0.1

0.25 0.125

0.067

0.25


mm

0.125

0.067

## 波浪带浅海砂 的粒度概率图

密西西比河三角洲 河口砂坝及河道砂 的粒度概率图



### 现代河道砂 的粒度概率图

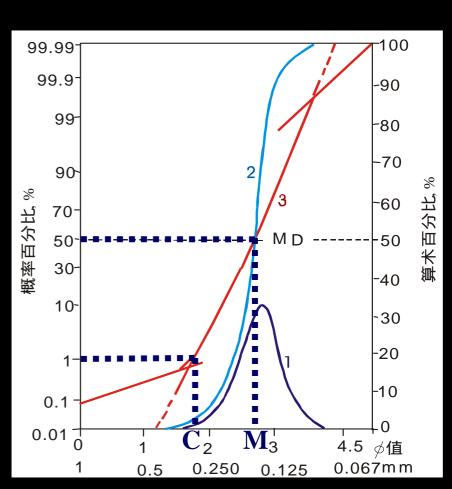
### 浊流沉积的 粒度概率图

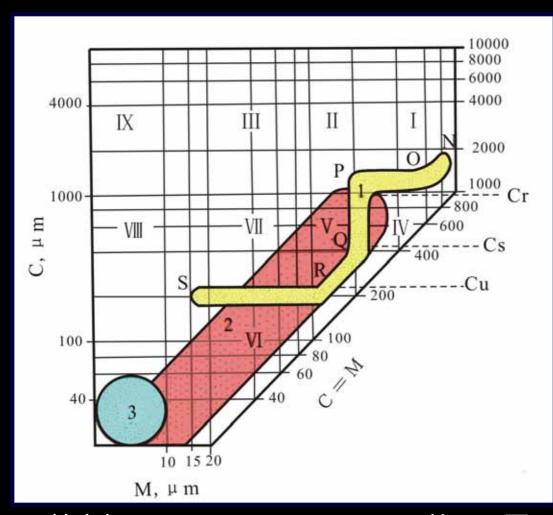
### School of Geoscience, Yangtze University

### 不同沉积环境砂质沉积物的粒度概率图特征

| 跳员              | 跃 组                                                                             | 分                                                                                               | (A)                                                                                                                                                                                   | 悬浮                                                                                                           | 孚 组                                                                                                                                                                                                                                                                                     | 分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 滚                                                                                                                                                                                                                                                                                                                         | 动 组                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (C)                                                                                                          |                              |
|-----------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------|
| 百分<br>含量<br>(%) | 分选                                                                              | C.T. (\$\phi\$)                                                                                 | F.Τ.<br>(φ)                                                                                                                                                                           | 百分<br>含量<br>(%)                                                                                              | 分选.                                                                                                                                                                                                                                                                                     | A.B.<br>混合                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F.Τ. (φ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 百分<br>含量<br>(%)                                                                                                                                                                                                                                                                                                           | 分选                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A.C.<br>混合                                                                                                   | 主 要 特 征                      |
| 97<br>~98       | 很好                                                                              | 1.2<br>~2.0                                                                                     | 3.0~<br>4.0                                                                                                                                                                           | 1~3                                                                                                          | 中等                                                                                                                                                                                                                                                                                      | 中等                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0~<br>>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0~2                                                                                                                                                                                                                                                                                                                       | 差                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0<br>~0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 少                                                                                                            | 跳 跃 组 分 含 量 较高,分选极好          |
| 50<br>~99       | 很好                                                                              | 0.5<br>~2.0                                                                                     | 3.0~<br>4.25                                                                                                                                                                          | 0~10                                                                                                         | 中好                                                                                                                                                                                                                                                                                      | 少                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.5~<br>>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0~50                                                                                                                                                                                                                                                                                                                      | 中                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.0~<br>无极限                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 中等                                                                                                           | 跳 跃 组 分 含 量 高,<br>分为二段直线     |
| 35<br>~90       | 好很好                                                                             | 2.0<br>~3.0                                                                                     | 3.0~<br>4.5                                                                                                                                                                           | 5~<br>70                                                                                                     | 中等差                                                                                                                                                                                                                                                                                     | 多                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.75~<br>>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0~10                                                                                                                                                                                                                                                                                                                      | 差                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0~<br>无极限                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 少                                                                                                            | 三种组分都有,三<br>段直线,以跳跃组分<br>为主  |
| 65<br>~98       | 中                                                                               | -1.5~<br>-1.0                                                                                   | 2.75<br>~3.5                                                                                                                                                                          | 2~<br>3.5                                                                                                    | 差                                                                                                                                                                                                                                                                                       | 少                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 变化                                                                                                                                                                                                                                                                                                                        | 差                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 无极限                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 少                                                                                                            | 变化大,以跳跃组<br>分为主,经常含有悬<br>浮组分 |
| 0~<br>30        | 中                                                                               | 2.0<br>~1.0                                                                                     | 2.0~<br>3.5                                                                                                                                                                           | 60~<br>100                                                                                                   | 差                                                                                                                                                                                                                                                                                       | 多                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0~5                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 无                                                                                                            | 单一种悬浮组分                      |
| 0~<br>70        | 中差                                                                              | 1.0<br>~2.5                                                                                     | 0~<br>3.5                                                                                                                                                                             | 30~<br>100                                                                                                   | 差                                                                                                                                                                                                                                                                                       | 多                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0~40                                                                                                                                                                                                                                                                                                                      | 中差                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 无极限                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 多                                                                                                            | 常 只 有 悬 浮 组 分,<br>层内有递变现象    |
|                 | 百分<br>含量<br>(%)<br>97<br>~98<br>50<br>~99<br>35<br>~90<br>65<br>~98<br>0~<br>30 | 百分<br>含量<br>(%)<br>97<br>~98<br>很好<br>50<br>~99 很好<br>35<br>~90 保好<br>65<br>~98 中<br>0~<br>30 中 | 百分<br>含量<br>(%) 分选 C.T.<br>(ф)<br>97<br>~98 很好 1.2<br>~2.0<br>50<br>~99 很好 0.5<br>~2.0<br>35 好 2.0<br>~90 很好 ~3.0<br>65 ~ 1.5~<br>~98 中 -1.5~<br>~1.0<br>0~ 中 2.0<br>~1.0<br>0~ 十 1.0 | 百分<br>含量<br>(%) 分选<br>(%) 分选<br>(%) 分选<br>(%) C.T.<br>(ф) F.T.<br>(ф) (中) (中) (中) (中) (中) (中) (中) (中) (中) (中 | 百分<br>含量<br>(%) 分选<br>(%) 分选<br>(%) C.T.<br>(ф) F.T.<br>(ф) 含量<br>(%) 含量<br>(%) 3.0~<br>4.0 1~3<br>50 很好 0.5 3.0~<br>~2.0 4.25 0~10<br>35 好 2.0 3.0~ 5~<br>~90 很好 ~3.0 4.5 70<br>65 中 一1.5~ 2.75 2~<br>~98 中 一1.0 ~3.5 3.5<br>0~ 中 2.0 2.0~ 60~<br>30 中 ~1.0 3.5 100<br>0~ 中 1.0 0~ 30~ | 百分<br>含量<br>(%) 分选<br>(%) から<br>(%) から | 百分<br>含量<br>(%) 分选<br>(%) 分选<br>(%) 分选<br>(ф) 常量<br>(%) 分选<br>(%) 中等<br>中等<br>(%) 分选<br>(%) 中等<br>中等<br>(%) 分选<br>(%) 分选<br>(%) 分选<br>(%) 中等<br>(%) 分选<br>(%) 中等<br>(%) 分选<br>(%) 分选<br>(%) 分选<br>(%) 分选<br>(%) 分选<br>(%) 中等<br>(%) 分选<br>(%) 分选<br>(%) 中等<br>(%) 分选<br>(%) 分选<br>(%) 中等<br>(%) 分选<br>(%) 分选<br>(%) 中等<br>(%) 分选<br>(%) 分选<br>(%) 中等<br>(%) 分选<br>(%) 分选<br>(%) 中等<br>(%) 分选<br>(%) 分选<br>(%) 中等<br>(%) 分选<br>(%) 分数<br>(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) | 百分<br>含量<br>(%) 分选<br>(%) 分选<br>(液) 分选<br>(液) 分选<br>(液) 分选<br>(液) 分选<br>(液) か<br>(水) 中等<br>(水) 中等<br>(水) 中等<br>(水) 中等<br>(水) 中等<br>(水) 中等<br>(水) 中等<br>(水) 中等<br>(水) (か) (か) (か) (か) (か) (か) (か) (か) (か) (か | 百分 含量 (%)     分选 (ф)     F.T. (φ)     百分 含量 (%)     A.B. 混合 (φ)     F.T. 百分 含量 (%)       97 ~98     很好 (%)     1.2 3.0~ 4.0     1~3 中等 中等 中等 4.0~ >4.5     0~2       50 ~99     很好 (%)     0.5 3.0~ 4.25     0~10 中 好 (%)     少 3.5~ 0~50       35 ~90     我好 (%)     3.0~ 5~ 中等 好 (%)     9% (%)       35 ~90     我好 (%)     5~ 中等 分 (%)     3.75~ 0~50       ~90     我好 (%)     5~ 中等 多 (%)     3.75~ 0~50       65 ~98     中 (%)     2.0 2.75 2~ 差     2~ 差     少 >4.5 变化       65 ~98     中 (%)     2.0 2.0~ 60~ 差     差     少 >4.5 变化       0~ 日     1.0 3.5 100     差     3 > 4.5 0~5       0~ 日     1.0 0~ 30~ 差     2.4.5 0~45     0~40 | 百分<br>含量<br>(%)       分选<br>(%)       C.T.<br>(Φ)       F.T.<br>(Φ)       百分<br>含量<br>(%)       A.B.<br>混合       F.T.<br>(Φ)       百分<br>含量<br>(%)       分选<br>(%)         97<br>~98       很好       1.2<br>~2.0       3.0~<br>4.0       1~3       中等       中等       4.0~<br>>4.5       0~2       差         50<br>~99       很好       0.5<br>~2.0       3.0~<br>4.25       0~10       中<br>好       少       3.5~<br>>4.5       0~50       中         35<br>~90       好<br>很好       2.0<br>~3.0       5~<br>70       中等       多       3.75~<br>>4.5       0~10       差         65<br>~98       中       -1.5~<br>-1.0       2.75<br>~3.5       2~<br>3.5       差       少       >4.5       变化       差         0~<br>30       中       2.0<br>~1.0       60~<br>~1.0       差       多       >4.5       0~5         0~       中       1.0       0~       30~       差       多       >4.5       0~40       中 | 百分 含量 (%) 分选 (C.T. (ф) (ф) 含量 (%) 分选 混合 (ф) 含量 (%) 分选 (ф) (ф) (ф) 分选 (ф) | 百分 含量 (%)                    |

注: C.T.代表粗粒一端的切割点; F.T.代表细粒一端的切割点。





### 3. C-M图解

C-M图是应用每个样品的C值和M值绘成的图形。

C值是累积曲线上1%处对应的粒径,C值与样品中最粗颗粒的粒径相当,代表了水动力搅动开始搬运的最大能量。

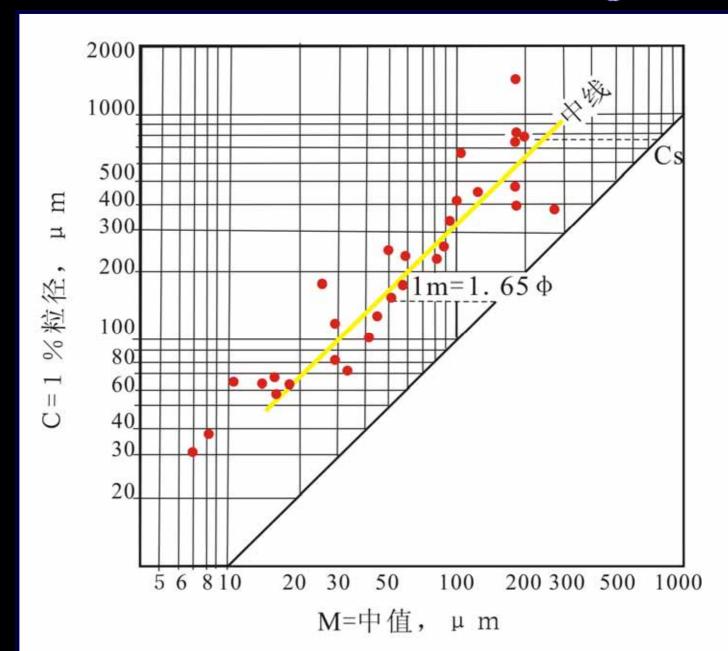
M值是累积曲线上50% 处对应的粒径,M值是中值,代表了水动力的平均能



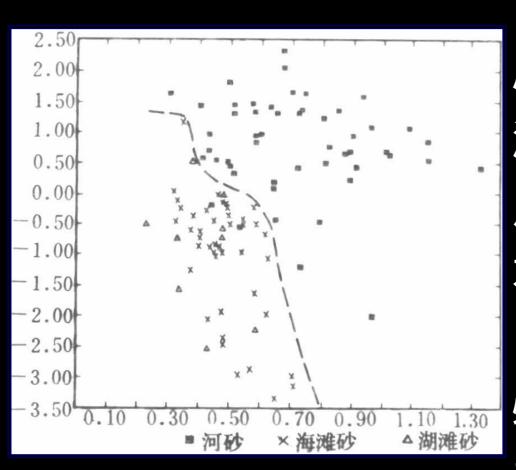


帕塞加 (Passega, 1957, 1964)的C-M图

- 1——牵引流沉积
- 2——浊流沉积
- 3——静水沉积


NO—滚动组分

OP—滚动搬运为主


PQ—悬浮沉积为主

QR—递变悬浮沉积

RS—均匀悬浮沉积



### 4. 结构参数散点图解



近年来有不少人 应用已知环境的现代 沉积物粒度参数作散 点图,在图上划分出 不同的环境范围,并 以此来推断古代沉积 物的沉积环境,取得 了不少成果。

## <u>本节要点:</u>

- ●粒度的表示方法
- ●碎屑岩的粒度分类和命名(重点)
- ●球度与圆度的分级
- ●杂基与胶结物的区别(重点)
- ●杂基的分类、胶结物的结构分类

- ●胶结类型与支撑结构的分类和二者间的关系 (重点)
- ●结构成熟度的概念(重点)
- ●粒度分析资料的应用(重点)